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Project Goals 

• Intent is to design a MEMS accelerometer that is 
hyper-sensitive over a dynamic range from micro-G 
to hundreds of G’s 

• The design will utilize photo-patternable material 
with blended nano-materials 

• The blend undergoes pyrolysis, resulting in a carbon-
carbon composite with pyrolytic carbon comprising 
the bulk of the material 
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Background 

• The pyrolysis of photo-patternable materials and the 
basic properties of pyrolytic carbon have been 
described by G. Whitesides [1] 

• M. Madou [2] and R. McCreery [3] have developed 
carbon on carbon approaches to develop carbon 
MEMS 

• Pyrolytic carbon structures have survived 150 G’s 
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Free-Standing Pyrolytic Carbon 
Structure by G. Whitesides [1] 

Suspended C-MEMS Structures by M. Madou [2] 



Tuning Pyrolytic Carbon 

• Pyrolytic carbon alone does 
not have the 
electromechanical 
properties desired 

• By blending nano-materials 
such as CNTs into the 
photoresist before pyrolysis, 
the properties of the carbon 
can be tuned to better suit 
the design 

• First attempt uses MWCNTs 
40-70 nm in diameter and 
0.5 – 5.0 µm in length 
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Outline of Work 

Composite Characterization 

• Fabricate test devices and 
preliminary designs from a 
variety of carbon-carbon 
composites 

• Collect physical data 

• Calculate basic material 
properties 

• Use COMSOL to validate the 
calculations 

Device Design 

• Correlate the COMSOL 
models with physical data 

• Use the COMSOL models to 
drive design optimization 
with less need for 
fabrication 

• Use COMSOL to explore and 
screen new designs pre-
fabrication 
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AFM Measurements 

• Atomic Force 
Microscopy (AFM) is 
used to explore the 
basic mechanical 
functioning of the 
composites 

• AFM provides a basic 
look at device 
deflection versus 
applied force 

deflection 

force 
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Young’s Modulus 

• By examining the 
relationship between 
force versus deflection 
for simple cantilever 
devices, a value for 
Young’s modulus can be 
extracted 

• This requires the 
assumption that the 
measurements are in 
the linear elastic range 
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Early Results 

• First composite devices 
show promising 
fabrication results 

• The geometries reduce 
~80% during pyrolysis 

• CNT loading over 5% 
results in damage to 
structures 

• Better dispersion 
techniques will help 
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Early Results 

CNT Loading Young's Modulus (GPa) 

0% 2.22 

1% 2.16 

5% 3.01 

7% 1.94 

10% 2.16 

• Values for Young’s 
modulus are lower 
than expected – 
problem may lie in 
initial AFM 
measurements 

• COMSOL model 
exhibits deflection 
within 5% of what is 
expected for the given 
Young’s modulus 

Point Load 

Fixed Surface 
(Underneath) 

Symmetry Boundary 
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Recent Results 

• More recent AFM measurements yielded a 
Young’s modulus of 52.3 GPa for unloaded 
pyrolytic carbon 

• This is much higher than the 2.22 GPa calculated 
previously 

• This value is higher than expected – previous 
literature cites a value of ~15 GPa [1] 

• In comparison, aluminum has a Young’s modulus 
of ~69 GPa 

• More measurements are needed to establish 
consistency 
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Recent Results 

• Recent AFM data also 
included measurements for 
a diaphragm device 

• The COMSOL model of the 
device did not behave as 
expected 

• The model deflected 849nm 
– 238nm was expected 

• Internal stresses may be 
playing a role in the physical 
device 
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The Value of COMSOL Modeling 

• Comparing a physical device to its COMSOL 
model yields valuable insight regardless of the 
outcome being favorable or not 

• Good correlation gives confidence that the model 
can be used to make meaningful predictions 

• Poor correlation leads to troubleshooting 
– There is an error in the model 

– Fabrication artifacts are not being taken into account 

– There is a misunderstanding of the physical structures 
or materials 
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Going Forward 

Composite Characterization 

• Establish consistency in the 
AFM measurements 
– More data points 

– Use of a “test wafer” to 
ensure that the AFM tip is 
consistent from one set of 
measurements to the next 

• Attempt to create larger 
devices that can be used in 
macro-scale testing 

Device Design 

• Troubleshoot differences 
between the physical data 
and the COMSOL models 

• Refine device fabrication 
methods to eliminate 
unwanted physical artifacts 

• Eventually use COMSOL for 
design optimization and for 
evaluating and comparing 
different designs 
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