

Comsol Conference 2011, Stuttgart

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using the COMSOL-MATLAB LiveLink

Eva Pelster, Dr. David Wenger 10/26/2011

- vertraulich -

Wenger Engineering GmbH

Since 2009: Comsol Certified Consultant

Comsol Conference 2011: GOLD Sponsor

NHA 2011, Washington DC: Exhibitor

WHEC 2012, Toronto: Exhibitor

- Founded in 2007 in Ulm, Germany
- 12 employees
- Services: Thermodynamics Development and Simulation
- Core capabilities: heat and mass transfer, chemical engineering, fluid mechanics, hydrogen technology
- Software: Matlab, Simulink, Comsol Multiphysics
- Since 2009: first "certified consultant" for Comsol Multiphysics software system in Germany (multidimensional modeling with finite elements)
- Premium positioning through scientific publications and patents

Dateiname - VERTRAULICH 06.11.2011 2

Some of our customers

3

Dateiname - VERTRAULICH 06.11.2011

Content

- (1) Introduction
- (2) Method
- (3) Results

(1) Introduction

- The study shows how to implement a method to use the output from a COMSOL simulation within a optimization algorithm
- The approach is shown by an example of an electronic component, exposed to a high current
- For the optimization a evolutionary algorithm implemented with Matlab is chosen

(1) Introduction

- The geometry is exposed to a current pulse for a defined time
- This results in a temperature rise as well as thermal deformation
- Objective of the optimization algorithm is to reach a desired maximum temperature for the defined pulse while keeping the von Mises stress to a minimum

Comsol Conference 2011, Stuttgart 10/26/2011

6

- (1) Introduction
- (2) Method
- (3) Results

(2) Method: The Comsol model

- The Joule heating model is used to calculate the temperature changes due to the applied current
- To calculate the thermal deformation and resulting stress the structural mechanics model is used
- The geometry is made of copper, material data from the Comsol material database is used

Comsol Conference 2011, Stuttgart

(2) Method: The evolutionary algorithm

- Evolutionary algorithms describe a class of different methods, here a genetic algorithm, part of the class of evolutionary algorithms is used
- These algorithms use methods and operators mimicking biological evolution, such as mutation and crossover
- To judge the quality of each solution a fitness value is introduced, aim is to minimize this value
- During the course of the search different individuals are produced
- Each individuals is made up of different genes, here each individuals represents a geometry with genes being the different characteristics of the geometry

(2) Method: The evolutionary algorithm

- The procedure uses the following steps:
- (1) Set *n*=1. Generate *N* solutions, forming the first population *P*. Evaluate fitness of solutions.
- (2) Crossover: Generate offspring Population Q_t .
- (3) Mutation: Mutate each solution $x \in Q_t$ with a defined mutation rate.
- (4) Evaluate fitness of each solution $x \in Q_t$.
- (5) Selection: Select N solutions from Q_t considering their fitness and copy them to P_{n+1} .
- (6) If stopping criterion is satisfied, terminate search, else, set n=n+1 and continue at Step 2.

(2) Method: Linking Comsol with the Evolutionary Algorithm

Comsol Conference 2011, Stuttgart 10/26/2011

11

- (1) Introduction
- (2) Method
- (3) Results

Operator	Value
Population size N	20
Crossover probability	0.25
Mutation probability	0.2
Max. generations	400

Comsol Conference 2011, Stuttgart 10/26/2011

12

The initial geometry and parameters of the genetic algorithm

Parameter	Value
Population size N	20
Crossover probability	0.25
Mutation probability	0.2
Max. generations	400

 Stopping criterion is satisfied before the maximum number of generations (400) is reached

Comsol Conference 2011, Stuttgart 10/26/2011

Geometries at diffferent points during run and output from final geometry

15

Comsol Conference 2011, Stuttgart 10/26/2011

- Customer was able to reduce the cost of experimental studies
- The geometry shows the desired behaviour while the life cycle due to smaller stress is extended
- This approach could be applicable of a multitude of problems

Contact:

Dr.-Ing. David Wenger Wenger Engineering GmbH Einsteinstr. 55 89077 Ulm 0731-159 37 500

mail@wenger-engineering.de