

Using Computational Multiphysics to Optimise Channel Design for a Novel PEM Fuel Cell Stack

Flora A. Daniels¹, Dan Brett¹, Anthony Kucernak², Cynthia Attingre²

¹ Centre for CO₂ Technology, Department of Chemical Engineering, University College London ² Department of Chemistry, Imperial College London

Carbon Management • Power Systems • Sustainability

Overview

- Introduction
- Modelling Objectives
- Model Domain
- Model Solution
- Results
- Conclusions

Introduction

A PEM fuel cell is an electrochemical engine:

The bipolar plate/current collector has several key functions:

- To distribute gas flows
- To allow current conduction
- To provide structural stability

Model Domain

3D model of a 5 cm² PEM fuel cell using printed circuit board current collectors with two different flow channel designs:

Model Solution

Cell operation determined by:

- •Weakly Compressible Navier-Stokes Pressure, p, Velocity, u
- Maxwell-Stefan Diffusion
- •Butler Volmer & Tafel equations
- Heat Conduction & Convection
- Schögl equation

 $\longrightarrow Mass fractions, w_i$

- -----> Current, i
- ------> Temperature, T
- \longrightarrow Velocity of water, u_w

Operation at 353 K and 1 atm

COMSOL Multiphysics 4.2 used to solve models

Structured mesh for each design, approx. 318000 degrees of freedom

Parametric, segregated solution procedure using MUMPS solver

Comparison of Polarisation Curves

•Both the circular and parallel designs have similar VI curves

•Significant activation losses between 0 to 100 mA cm⁻², ~150 mV loss

•Cannot deduce best design from VI curves alone

Mass fraction of O₂ at 0.6V

8 of 13

Mass fraction of O₂ at membrane - catalyst interface at 0.6 V

9 of 1

Oxygen consumption governed by channel design

- •Highest consumption under the ribs of the plate
- •More uniform distribution of reactants when using parallel channels

Water flux across the membrane at 0.6V

•Movement of water from anode to cathode side

•Electroosmotic drag is greater than the pressure term

- •Flooding could be a potential problem
- •Parallel channels are preferable due to uniform distribution

9.1446×10

Temperature Profile at 0.6V

11 of 1

•Changes in temperature due to electrochemical reactions and resistive heating

 Larger proportion of cell operates at higher temperatures when using circular channels

Conclusions

Circular Channels

- Reactant depletion earlier in the cell
- Operating temperature: 353K – 372K
- Potential flooding issue

Parallel Channels

- Uniform distribution of reactants
- → Operating temperature: 353K – 369K
- A smaller proportion operates at higher temperatures
- Less potential for flooding

→ <u>Verdict:</u>

Parallel channel bipolar plate most suitable of the two designs!

Thank you!

For further information, please email at flora.daniels.09@ucl.ac.uk

