
A Model of Gas Bubble Growth by Comsol Multiphysics 
 
B.Chinè*1,2 and M. Monno1,3 
1Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy; 2Instituto Tecnològico  
de Costa Rica, Escuela de Ciencia e Ingenieria de Materiales, Cartago, Costa Rica; 3Politecnico di Milano, 
Dipartimento di Meccanica, Milano, Italy.  
*Corresponding author:  Laboratorio MUSP, Località Le Mose, SS 10, 29100 Piacenza, Italy; bruno.chine@musp.it 
 
 
Abstract: We use Comsol Multiphysics to 
model a gas bubble expansion in a viscous liquid 
initially at rest, a very common system for 
lightweight foamed materials from metal 
production and polymer processing. The aim of  
the present work is to develop a first 
computational model for the growth of gas 
bubbles under simpler conditions, modeling both 
the gas and liquid flow and to verify its validity 
by comparing the numerical results with existing 
analytical solutions. The two dimensional 
isothermal model developed in Comsol 
Multiphysics considers a gas bubble growing due 
to a pressure difference with a surrounding 
Newtonian liquid. Surface tension effects on the 
gas-liquid interface are considered.  The model 
equations are solved on a fixed grid, built both in 
the gas than in the liquid region. In order to 
capture the front between the two fluids we 
exploit the capability of the level set method.  
The numerical results of the computational 
model compare well with analytical solutions 
from theory and obtained for a few simple cases. 
This first computational work is a basis for 
considering successive more realistic foam 
expansions. 
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1. Introduction 
 

Gas bubble growing in a surrounding liquid 
matrix is an important and complex phenomenon 
in many technological fields. An interesting case 
is encountered in cellular metals and metal foams 
production, when nucleated gas bubbles expand 
and move in a confined liquid metal before to 
cool and solidify. A liquid metal (e.g. Al) can be 
foamed directly by injecting gas (H2) or gas 
releasing blowing agents (solid particles), or by 
producing supersaturated metal-gas solutions [1]. 
The process depends on simultaneous mass, 
momentum and energy transfer between three 

phases: solid, liquid and gas. Furthermore, other 
physical phenomena should be taken in account 
in the system, like complex interface processes, 
bubble motion, coexistence, coalescence and 
collapse of bubbles. Experimental works carried 
out by observation techniques cannot be 
sometimes applied owing to the specific 
properties of liquid metals: they are hot, opaque 
and very reactive with oxygen. Then, these 
mechanisms can be modelled and studied by 
applying computational techniques, although the 
computational work is very challenging: the 
phenomenon are not independent among them 
and many times are simultaneous. Multiphase 
flow modelling is also required because of the 
presence of more phases: the solid metal matrix 
containing the foaming agent not yet fully 
melted, the gaseous phase made up of bubbles 
and the liquid phase composed of a melted metal 
matrix.  Mass and heat transfer should be also 
taken into account in the modelling work to give 
the most accurate results. On the other hand 
these phenomenon have major effects on the 
quality of metal foams. To give an example, 
during mould filling the desired metal foam 
density is very strategic and this is dependent on 
the ability of controlling the gas bubble growth. 

It is understood that the improving of 
foaming quality and cost-effectiveness may be 
also realized by means of simplified 
computational  models. Attention will be 
demanded by the presence of a dynamic interface 
between the gas bubbles continuously 
originating and the surrounding liquid. To 
accurately compute the evolution of  interfaces, 
many  computational methods are been designed 
in the past. Lagrangian methods use a numerical 
grid which follows the fluid and tracks the 
interface, while by Eulerian methods the 
interface is captured on a stationary grid. One 
interesting alternative Eulerian numerical 
formulation is provided by the level set method, 
which embeds the interface as the zero level set 
of a function. The method was first introduced 

Excerpt from the Proceedings of the COMSOL Conference 2010 Paris

http://www.comsol.com/conf_cd_2011_eu


by Osher and Sethian in 1988 [2] and has 
encountered extensive applications in multiphase 
flow modelling. Level set techniques have the 
additional advantage that they can easily provide 
accurate values for the normal direction and the 
curvature of a physical interface. 

As a first effort to understand metal foaming 
mechanisms, we consider the growth of a gas 
bubble embedded in a viscous liquid. We take 
into account the interface movement which is 
due to a pressure difference between the two 
phases. To model and solve the governing 
equations of the problem we will use Comsol 
Multiphysics, a commercial simulation tool 
based on finite elements method which includes 
the level set method in its Chemical Engineering 
Module [3]. 
 
 
2. Theory and model description 
 

In this section we describe the two 
dimensional model and the assumptions which 
are been done to reasonably simplify the 
problem. This is due also for managing the 
computational job in a common laptop machine.  
 
2.1 Theory  

 
Let us to consider a gas bubble growing due 

only to a pressure difference with a surrounding 
limited amount of liquid matrix. The problem is 
assumed two dimensional,  no heat transfer and 
mass diffusion are taken into account. The 
system is thus isothermal and there are not 
gradients of species concentration. The gas in the 
bubble follows the ideal gas law while the liquid 
is considered to be an incompressible Newtonian 
fluid. Furthermore, the gas and the liquid are 
assumed to be immiscible.  

Figure 1 shows a schematic of a circular gas 
bubble with initial radius and pressure 
respectively equal  to R0 and  pG,0. The expansion 
takes place in a liquid matrix Ω modeled as a 
circular region of radius RΩ. For symmetrical 
considerations it is possible to reduce the 
modeled region, both for the gas bubble and the 
liquid (see section 2.2). The gas liquid interface 
is a free surface with uniform surface tension 
coefficient σ, with κ representing the local 
curvature and n the unit normal to the interface. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Figure 1. Schematic of a gas bubble growth in a  
liquid region with the considered symmetry: at the 
beginning R(t)=R0, pG(t)=pG, 0 and pEXT(t)=pEXT, 0. 

 
 

At any time t, T is the constant absolute 
temperature of the system and R(t) and pG(t) are 
the bubble radius and gas pressure, respectively. 

At the beginning ( 0t ), with the liquid at 
rest and by calling with pEXT, 0 the initial ambient 
pressure imposed on the boundary of Ω, the 
Laplace’s equation states that stress balance at 
the surface of a circular bubble of radius R0 is: 

 
 0,0, EXTG pp    (1) 

 
where: 
 

0/1 R      (2) 
 
for a circular bubble. Substituting Eq.2 into Eq.1, 
it is written as: 
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which gives the radius of the bubble at 0t  
when the liquid is still at rest. Consequently, 
given σ, the bubble will expand or contract and 
the liquid will flow if the pressure difference 

0,0, EXTG pp   changes its value. For a gas bubble 
expansion, a common case could be represented 
by a sudden lowering of the ambient pressure. 
Under this condition, a new equilibrium state 
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will be reached by the bubble and, with the 
liquid at rest again, the bubble radius at 
equilibrium is: 
 

EXTG
eq pp

R
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
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Here pG and pEXT  are the new equilibrium values 
of the pressure, for the gas and the ambient 
respectively. On the other hand, the ideal gas 
equation followed by the specie inside the 
bubble is: 
 

TnpV      (5) 
 
where V represents the volume (area for a two 
dimensional problem) of the bubble,   is the 
universal gas constant and n is the number of 
moles. We assume that during bubble expansion 
the behavior of the gas is polytropic, thus for an 
isothermal process it follows: 

 
ApAp GG 00,    (6) 

 
being A0 and A the equilibrium bubble areas for 
the pressure pG,0 and pG , respectively. 
 
2.2 Governing equations  

 
 To simulate numerically the isothermal 
growth of a gas bubble embedded in a viscous 
liquid and the fluid flows that originate, we use 
the classical equations of fluid dynamics coupled 
to the level set method available in Comsol 
Multiphysics. As we said before, the method is 
very well suited to describe the motion of the 
interface during the gas expansion. We assume 
the liquid to be an incompressible Newtonian 
fluid and take into account the compressibility of 
the gas in the bubble. For gas flows with low 
Mach numbers (approximately 3.0Ma ), a 
weakly- compressible model can be used. In this 
model, the gas density ρG(t) is given by the ideal 
gas law [5], after introducing the molar mass M 
and  mass m ( Mmn  ). Then, for both the 
fluids, the coupled partial differential equations 
of the model are the following (Two Phase Flow, 
Level Set Application Mode, [3]):  
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In the momentum transport equation, the scalar 
magnitudes ρ, η and DV are the fluid density, 
dynamic viscosity and bulk viscosity, 
respectively. Among the other terms, u is the 
fluid velocity, I is the identity tensor, ρg is  the 
gravity force and F takes into accounts other 
body forces. The term FST  accounts for the 
surface tension force acting at the interface 
between the two fluids (see [3] for more details 
on FST modeling). 

The advection of the level set function   in 
the computational region is given by Eq. 9. To 
compute this field, a signed distance function at

0t  is used to build the function   which 
corresponds to the interface at the level set 

5.0 . In the same step the values of   inside 
the two phases are setting as 5.00   for one 
fluid (in our model is the liquid) and 15.0   
for the other (gas in the model). The parameter γ 
represents the reinitialization parameter  and 
controls the re-initialization performed at some 
later point in the calculation beyond 0t , need 
to preserve the values of distance close to the 
interface. Finally ε is the interface thickness 
parameter which adds extra numerical diffusion 
in order to stabilize the computations of Eq. 9.  

To solve the governing equations we have 
select a Cartesian system of coordinates (x,y) and 
applied the symmetry conditions shown in 
Figure 1. The computational domain Ω has been  
reduced again, giving a circular surface with 

azimuthal angle 
4

0 
  . In the domain the 

external boundary of Ω has been set as an 
outflow with a Dirichlet condition 0)( tpEXT  
on the pressure and vanishing viscous stresses.  

At  0t , starting with gas and liquid phases 
at equilibrium, we impose a pressure value 
greater than 0R  on the gas bubble. Forces ρg 
and F are set to zero, then we drive the interface 
motion by analytically computing the density 



variation ρG(t). Using cylindrical coordinates 
(r,θ), the incompressible liquid motion is radially 
oriented and the velocity field u is only a 
function of (r,t). The interface velocity may be 
obtained by the velocity field at r=R, this leads 
to: 
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In the absence of tension surface effects and 
considering the stress at r=R, the bubble radius 
may be calculated by solving an ordinary 
differential equation, as explained in [4]. 
Successively, for 0EXTp  the density variation 
is computed as: 
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Instead, for 0  we solve the respective 
ordinary differential equation and calculate R(t), 
numerically, by the solution:  
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Finally, the radius R(t) from Eq.12 is substituted 
into Eq.6, modeling a density change for an 
isothermal process with surface tension 
phenomenon at interface. 
 

 

3. Simulations 
 

Our main interest is to simulate a gas bubble 
expansion in a liquid metal during foam 
processing, in order to capture the interface and 
analyze fluid flows similar to those we could 
have within moulds. However, multiphase 
phenomenon in metal foam production give 
strong property gradients at fluid interfaces, 
which cause computations to be carried out with 
some difficulties. Considering these 
complexities, we start to study simpler problems, 
as first examples of future more realistic 
simulations. Consequently, we have set the  

Table 1: Fluid properties used in the simulations of 
gas bubble growth in a liquid. 
 
Magnitude Symbol Value 
Universal gas 
constant  

  8.314 J/(mol·K) 

Gas molar mass M 2 g/mol 
Gas density  ρG Eq.5, Eq.6, Eq.11 
Liquid density ρL 10 kg/m3 
Gas viscosity ηG 10-3 Pa·s 
Liquid viscosity ηL 10-1 Pa·s 
Gas bulk 
viscosity 

κDV  0  Pa·s 

Surface tension 
coefficient 

σ   0    N/m  
10--2 N/m 

Initial bubble 
radius 

R0 10-2 m 

Initial bubble 
pressure 

pG,0 0.2 Pa  
1.2 Pa; 2.2 Pa 

Ambient pressure pEXT 0 Pa 
Constant 
temperature  

T 933 K 

 
Table 2: Model parameters used in the simulations of 
gas bubble growth in a liquid. 
 
Magnitude Symbol Value 
Max element size 
of the mesh 

- 10-4 m 

Time stepping  - set by the solver 
Relative tolerance  - 10-3 s 
Absolute 
tolerance 

- 10-4 s 

Interface 
thickness  

ε 10-4 m 

Reinitialization γ 0.01  0.02 m/s 
 
values of fluid properties shown in Table 1. 
Other parameters used in the model are given in 
Table 2. In this way we model flows with 
moderate density and viscosity differences, as 
well as surface tension. The density of the liquid 
is taken to be 10 kg/m3, while the initial gas 
density ρG,0, computed by Eq. 5, is 0.02613 
kg/m3 which gives a density ratio of 
approximately 4x102. In the same way the 
viscosity ratio is near 102. The surface tension 
coefficient is zero in the first simulated case and 
equal to 0.01 N/m in the other computations. 



To solve the model equations, the global 
computational domain Ω has been meshed by 104 
triangle elements approximately, corresponding 
to more than 8·104 degrees of freedom, number 
which could be still managed by a common 
laptop. Finally, calculations have been carried 
out with the direct solver PARDISO, Comsol 
Multiphysics version 3.5a. Although the partial 
differential equations of the model are non linear 
and time dependent, the converge obtained 
during computations was good, giving a step-
size near to 10-3 s with a solution time of 1.8 
hours approximately, for a laptop with 2.8 GHz 
Intel Core2 Duo processor and 4 GB RAM. 

The simulations started by initializing the 
level set function, using a pseudo-time equal to 
10-2 s, such that   varies smoothly from zero to 
one across the interface. Then, the transient 
mode was selected and computations were 
carried out in order to get bubble growth,  
interface motion and fluid flow, for three 
different conditions: 

 
a) σ = 0     N/m,   p = 0.2 Pa 
b) σ =10--2 N/m,   p = 1.2 Pa 
c) σ =10--2 N/m,  p =  2.2 Pa 

 
 
4. Results and discussion 
 

Figure 2 shows the bubble growth in the 
liquid region when tension surface is present and 
the initial gas pressure is equal to 1.2 Pa. The 
volume gas fraction is plotted 1.4 s after the 
growth starts, when the bubble has already 
reached its maximum expansion. We observe 
that the final bubble radius is equal to 0.012 m, 
in agreement with the analytical value given by 
Eq.4.  For the same conditions, Figure 3 gives 
the pressure field both for the gas and liquid, 
which agrees with the values of pressure for a 
liquid again at rest ( EXTL pp  ) and with a static 

pressure jump equal to Pa83.0
012.0
01.0


eqR


Figure 4 presents the change of areas, over time,  
obtained by integrating the level set function   
in the computational region. As shown in the 
figure, the gas area is growing only until to a  
certain time value ( s1t ), stating that for 

s4.1t
 
the bubble is in equilibrium with the 

liquid. Due to the expansion, the fluids acquire a 

 
 

Figure 2. Growth of a gas bubble in a liquid 
corresponding to the simulated case b) of section 3.  
 
 

 
 

Figure 3. Pressure field in the gas and liquid 
corresponding to the simulated case b) of section 3. 
 
significant motion, with the characteristic radial 
pattern depicted in Figure 5. In the figure we 
have plotted the pressure field superimposed on 
the contour of fluid velocity at  st 2.0 , for a 
gas bubble with an initial pressure equal to 2.2 
Pa. As expected, the magnitude of the gas 
velocity increases with decreasing distance from 
the gas-liquid interface, where it reaches its 
maximal value, which is equal to 0.02 m/s 
approximately. Continuity between gas and 
liquid velocity can be well noted, indicating a 
correct  coupling of the model at interface. At 

st 2.0 the bubble is still expanding, far from  



 
Figure 4. Values of total (black line), gas (brown 
dashed line) and liquid (blue dashed line) area, 
corresponding to the case b) of section 3.  

 
Figure 5. Pressure and velocity field during the 
growth of a gas bubble in a liquid, corresponding to 
the case c) of section 3:  t = 0.2 s after growth starts. 
 
the static equilibrium. In fact, the radius for this 
latter condition is given by 

m022.0
2

00,




Rp
R G

eq , which is obtained 

introducing Eq.4 into Eq.6. In correspondence of 
that radius the pressure would be equal to 

Pa45.0
022.0
01.0


eqR
 . This value is lower than 

the  maximum pressure present at that moment 
within the bubble, close to 0.73 Pa, as we may 
observe in the same Figure 5.  
 

 

 

 

5. Conclusions 
 
A model by Comsol Multiphysics has been 
presented for the simulation of gas bubble 
growth with flow in the liquid and inside the gas 
region. No mass and energy transfers has been 
considered, bubble growth is due to only a 
pressure difference. Flows in both the fluids are 
calculated using a weakly-compressible model 
coupled to a level set transport equation which 
captures the front between the two phases. Gas 
density has been modeled starting from the gas 
ideal equation, also in presence of surface 
tension effects. The resulting model performs 
well, giving results which agree with analytical 
solutions. Although the model takes into 
accounts moderate density and viscosity 
difference values for the fluids, simplifying in 
this way the numerical computations, it 
represents a good basis for future and more 
realistic simulations of foam expansions. 
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