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Abstract: Magnetic  cantilever  measurements 
have  detected  half-flux  states  in  mesoscopic 
rings  of  the  layered  material  Sr2RuO4,  adding 
evidence that  superconducting  Sr2RuO4 may be 
described  by  a  p-wave  order  parameter.  A 
proposal  accounting for  this behavior  has  been 
presented  in  which the polarization axis of the 
condensates lies entirely in the plane. In a half-
flux  state  there  is  a  non-zero  polarization,  due 
purely to kinematic effects, which couples to an 
in-plane  magnetic  field,  lowering  the  half-flux 
state's free energy. The viability of such a model 
and  a  determination  of  phenomenological 
parameters  depends  heavily  on  the  specific 
geometry  used.  A  set  of  Ginzburg-Landau 
equations has been solved using COMSOL and 
geometries very similar to the experimental set-
up. The results show that the Ginzburg-Landau 
model  can  qualitatively  reproduce  the 
experimental  data  within  the  physically 
allowable parameter space.
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1. Introduction

COMSOL has been a useful tool in studying 
superconductivity[1]  due to V.L.  Ginzburg and 
L.D.  Landau's   phenomenological  theory  of 
second  order  phase  transitions[2].  This  theory 
describes   superconductivity  in  terms  of  an 
“order parameter” which is the solution of a set 
of coupled PDEs. Ginzburg-Landau (GL) theory 
provides a useful explanation to the phenomenon 
of flux quantization in Type II superconductors 
in which magnetic flux penetrates the sample in 
discrete units of ħ/2e.

Experiments performed by Jang et al.,  at the 
Univeristy of Illinois at Urbana-Champaign, 
have explored the existence of half-quantum 
vortices (HQV) in the layered material 
Sr2RuO4[3] which carry a half unit of magnetic 
flux. Sr2RuO4  is believed to be a spin-triplet p-
wave superconductor[4 and references therein] 
and to exist in the so-called equal spin pairing 
(ESP) state which can be thought of as consisting 
of two interacting condensates in the spin

configurations |↑↑> and |↓↓>. 

This suggests that the superconductivity in  
Sr2RuO4 may be modeled using a GL model with 
two order parameters and appropriate couplings. 
Solving this model, then, requires the solution of 
a system of coupled PDEs in a 3-dimensional 
geometry making COMSOL's advanced FEM 
solver a natural tool. 

In section 2, I will briefly discuss the 
experimental results which are the motivation for 
this study. In section 3, I will present an 
overview of the relevant theory along with the 
equations used with boundary conditions. In 
section 4, I will describe the use of COMSOL, 
detailing specific geometries. Finally, in section 
5, I will present results followed by a discussion 
of their implications. 

2. Experimental Results

Originally proposed by Chung,  Bluhm, and 
Kim[6], Jang et  al. looked for the existence of 
half-quantum vortices by manufacturing micron 
scale  rings  of  Sr2RuO4  having the plane  of  the 
rings  commensurate  with  the  crystal  ab-plane 
(see  Figure  1).  This  geometry  serves  multiple 
purposes. 

Figure  1.  From  [3].  A  sample  of  SRO  with  ring 
geometry  is  shown  on  the  left.  On  the  right  is  the 
measured  magnetic  moment  along  the  z-axis  versus 
applied z-axis field at zero in-plane field.

Firstly, spin currents, which do not couple to the 
magnetic field and are, therefore, not screened in 
the bulk, are logarithmically divergent in energy 
with increasing sample size.  According to [6], a 
domain size of order λ, the penetration depth, is 
necessary  for  the  stabilization  of  half-quantum 
vortices. The penetration depth in the ab-plane of 
Sr2RuO4  is 152 nm[4] necessitating  mesoscopic 
domains.



Figure 2.  From [3].  The figure  shows the magnetic 
moment  versus  z-axis  field  at  various  in-plane field 
values. The curves have been offset for easier viewing.

The ring geometry is beneficial as it avoids 
complications from vortex interactions. When a 
vortex  enters  the  sample,  the  flux  will  simply 
pass through the center of the ring as opposed to 
passing through the bulk. This gives a discrete 
set of vortex states indexed by the quanta of flux 
passing through the ring. 

Using a cantilever magnetometer, Jang et al. 
were  able to  measure  the magnetic  moment  of 
the samples versus applied z-axis field as shown 
in  Figure  1.  The  negative  slope  near  Hz=0  is 
indicative  of  the  diamagnetic  response  of 
superconductors.  The  discontinuities  in  the 
magnetic  moment  indicate  the  entrance  of 
vortices through the sample, the size of the jump 
proportional  to  the  amount  of  flux  penetrating 
the  sample.  The  data  shown  in  Figure  1  was 
taken  with  zero  in-plane  field  and  the 
discontinuities  are  believed  to  be  indicative  of 
transitions between integer flux states. 

With the application of a non-zero in-plane 
magnetic  field,  a separate set  of discontinuities 
appears as shown in Figure 2. It is shown in [3] 
that  these additional  transitions are very nearly 
half  as  large  as  the  full  transitions  shown  in 
Figure  1  and  are  believed  to  indicate  the 

existence  of  half-integer  flux  states.   It  is  of 
interest to note that the stability region of these 
half-integer  flux  states  grows  linearly  with  in-
plane  field  and  is  an  important  test  of  our 
theoretical model.

3. Theoretical Model

3.1 Standard GL theory and flux quantization

The standard GL theory is embodied by the 
free energy functional

FGL [ψ ,Α ]=∫d 3 r {
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where ψ is the complex scalar order parameter 
whose squared magnitude represents the density 
of superconducting charge carriers, A is the 
vector potential with Β=∇×Α ,  e is the 
fundamental charge, m is a phenomenological 
mass parameter, and α, β are temperature 
dependent phenomenological parameters.  The 
GL equations are derived by minimizing the free 
energy with respect to ψ and A. They are:
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The  right  side  of  the  second  equation 
represents  the  supercurrent  which  will  vanish 
within the bulk of the superconductor.  In  other 
words:

∇ ψ−
2ie
ℏ

Α ψ=0
.

Now  consider  magnetic  flux  piercing  our 
superconducting  ring  and  perform  a  contour 
integral of the above equation in a closed path, 

C,  around  the  central  hole.  Writing  ψ =ρe iθ

, 
choose a path such that  ρ is constant. We then 
arrive at the condition that 

∫C Αdl=n ℏ
2e .

Thus,  the  flux  passing  through  our  contour  is 
quantized  in  units  of   ħ/2e.  It  was  mentioned 
earlier  that  the flux states of the ring could be 
indexed by the number of flux quanta piercing 
the ring. The number of flux quanta is now seen 
to  be  precisely  the  winding  number,  n,  of  the 
phase of the order parameter around the hole. 



For the purposes of numerical calculation, it 
is customary to use dimensionless units in which 
the free energy functional takes the form
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, the GL parameter, 
is the ratio of the penetration depth to coherence 
length in the superconductor. It  must be greater 
than 1/√2 for Type II behavior. For  Sr2RuO4  it's 
value is 2.3[4].

A note should also be made about methods of 
dealing  with  the  anisotropy  of   Sr2RuO4.  In 
layered materials such as  Sr2RuO4, gradients of 
ψ in  the  z-direction  are  less  energetically 
expensive  than  gradients  in  the  ab-plane.  This 
can be taken into account by inserting the tensor 
diag(1,1,1/γ) into all of the dot products in the 
free energy with the exception of the last term 
representing the field energy. For  Sr2RuO4, the 
anisotropy parameter  γ is 400. For the purposes 
of this paper I will  suppress  the appearance of 
this tensor. 

For  more  information  about  the  de-
dimensionalizing  procedure  or  the  anisotropic 
GL theory, see [7].

3.2 GL theory of the ESP state

In the ESP state, there are two order 
parameters whose squared magnitudes represent 
the density of the spin-up and spin-down 
superconducting fluids. Without considering  
couplings between the two order parameters our 
model free energy is
F0 [ψ↑ ,ψ↓ ,Α]=F GL[ψ↑ ,Α]+F GL[ ψ↓ ,Α]   

−∣∇×Α−Βapp∣
2

where the subtraction of the last term is to avoid 
over-counting the field energy. 

In our model of the ESP state we consider 
the addition of a current coupling term

FCC [ψ↑ ,ψ↓ ,Α]=∫d 3 rβ J ↑ J ↓

where β is a material dependent parameter and 
the J are the supercurrents defined by

J =R e {ψ
*
(
∇
κ −i Α)ψ} .

In the single condensate model considered in 
the previous section, the amount of allowed flux 
quanta was given by the integer winding number, 
n. In this model, n is replaced by the quantity 
(n↑+n↓)/2 involving the winding numbers of the 
phases of the spin-up and spin-down 
condensates. The half quantum vortex state is 
then one where n↑+n↓ is odd. 

The additional current coupling term imposes 
an energy cost for both superfluids having 
currents in the same direction. This produces a 
favoring of the half-flux states over  neighboring 
integer-flux states.  

3.3 Kinematic Spin Polarization

 Making a connection with fluid mechanics, 
the GL equation for ψ can be viewed as a 
Bernoulli equation for the superfluid. There is a 
reduction of superfluid density |ψ|2 with 
increasing superfluid velocity, grad(θ)/κ-A. A 
mismatch in superfluid velocities between the 
spin-up and spin-down condensates would then 
lead to a difference in their densities and, thus, a 
spin polarization. The magnetic moment 
resulting from this spin polarization would 
couple to an in-plane field and reduce the state's 
energy.

This is precisely what happens in the the 
half-flux state. Since, in the half-flux state, the 
winding numbers of the spin-up and spin-down 
condensates are necessarily not equal, their 
velocities will be different, as well (Figure 3). 
This additional magnetic moment only exists, 
then, in the half-integer state and, thus, provides 
the half-integer state a reduction in free energy 
that grows with in-plane fields. 

To embody this behavior we add the 
additional term
F HI [ ψ↑ , ψ↓ ,Α]=∫d 3rμHI (∣ψ↑∣

2
−∣ψ↓∣

2
) Bab  

to our free energy with the difference in the 
densities of the spin-up and spin-down 
condensates coupled to the in-plane component 
of the magnetic field. The strength of this term 
will be determined by the size of the parameter 
μHI.

Figure 3.  A COMSOL solution of |ψ↑|2- |ψ↓|2  in the 
(n↑,n↓)=(0,1) state for a sample ring geometry.



4. Use of COMSOL Multiphysics

The simulation geometry is shown in Figure 
4. In dimensionless units, distances are measured 
in terms of the ab-plane penetration depth λ. The 
superconducting ring's  inner  radius  is  2λ while 
the outer  radius  averages  4.25λ.  The height  of 
the  sample  is  3λ.  This  roughly  matches  the 
experimental sample shown in Figure 1.

The  superconducting  ring  was  placed  in  a 
surrounding  spherical  volume with  a  radius  of 
15λ.  This  radius  was  chosen  to  balance 
competing effects of increased computation time 
for larger radii and spuriously high free energies 
in higher flux states for smaller radii.

Figure 4. On the left is shown the simulated geometry 
for  the superconducting ring  (compare  to  sample  in 
Figure 1). On the right is shown a ring embedded in 
the total spherical volume. 

Using  notation  from  section  3,  the  total 
model free energy is given by
F tot [ ψ↑ ,ψ↓ ,Α]=F 0+F cc+F HI .

Our method for exploring the energetics  of the 
half-  and  integer-flux  states  was  to  use  a 
relaxation  technique  where  we  set  the  initial 
conditions  such  that  the  system  was  in  the 
desired flux state. For instance, if it was desired 
to solve for the fields in a  (n↑,n↓)=(1,0) state one 
would  set  the  initial  conditions  of  the  order 
parameters to be
ψ↑(t=0)=exp {i θ},ψ↓(t=0)=1 .

Figure 5. Plots of the phase of the order parameter for 
winding numbers of zero, one, and two. 

The initial conditions for the vector potential 
were chosen so as to produce the desired  applied 
magnetic field. 

The boundary conditions for the spin-up and 
spin-down order  parameters  are derived, in the 
usual way, by forcing the surface terms that arise 
in varying the free energy to vanish. Physically, 
they ensure that  the currents are not normal to 
the surface so the condensate does not leave the 
superconducting ring. 

The integral  of  the vector  potential  is  over 
the entire  volume so it's  boundary condition is 
applied on the edge of the total volume. There 
was  applied  a  Dirichlet  boundary  condition, 
setting  the  vector  potential  equal  to  the  same 
function as  was used for  the initial  conditions, 
ensuring a fixed flux through the volume.

We then solved the equations
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using a time-dependent study  for 20 time units 
to allow the system to relax into it's equilibrium 
state. 

Once  an  equilibrium solution  was  reached, 
the free energy was calculated by performing the 
appropriate  volume integral.  By doing  this  for 
desired values of the magnetic  field, one could 
construct  the  functional  form  of  free  energy 
versus applied z-axis field for various values of 
in-plane field.

5. Results

Figure  6  shows  some  results  of  the  free 
energy of the system versus applied z-axis field 
(from 0 to 40 Gauss) for a few values of applied 
in-plane magnetic field. The blue line depicts the 
(0,0) and (1,1) integer-flux states while the red 
line depicts the (1,0) half-flux state. The data for 
each value of in-plane field has been shifted by a 
constant  so  that  the  integer-flux  state's  data 
overlap  one  another.  The  dimensionless 
parameter  values  used  here  are  β=0.7  and 
μ=0.75.

Figure 6. Free energy diagram showing the growing 
stability of the half-flux state with increasing magnetic 
field.



Figure 7. Magnetization curves for  the geometry of 
Figure 4 with β=0.69 and  μ=0.7.

One can see from the diagram that the half-
flux state has a reduced free energy versus the 
integer-flux states for higher values of in-plane 
field.

Applying  a parabolic  fit  to  the  free  energy 
curves,  one  can  take  the  the  derivative  with 
respect to the applied magnetic field to obtain the 
magnetization  curves.  Figure  7  displays 
magnetization  curves  versus  z-axis  field  for 
various values of in-plane field as in Figure 2. 
The  magnetization  curves  are  seen  to  be 
qualitatively similar. By adjusting  β and  μHI  one 
may  obtain  the  desired  minimum  in-plane 
stabilization  field  and  stability  region  growth 
rate. The data in Figure 7 was produced with the 
geometry shown in Figure 4 with  β=0.69 and 
μ=0.7.

The size of the stability region versus applied 
in-plane  magnetic  field  of  the  magnetization 
curves  in  Figure  7  is  plotted  in  Figure  8.  The 
growth rate has a very good linear fit. With this 
choice  of  parameters  and  geometry,  the 
minimum in-plane field necessary to stabilize the 
HQV is approximately 17.4 Oe while the growth 
rate is 0.14.

Figure  8. Plot  of  the  linear  growth  of  the  stability 
region.

6. Discussion

In  the  results  section,  it  was  seen  that  the 
theoretical  model  proposed  can  reproduce  the 
data and obtain order of magnitude estimates for 
the  phenomenological  model  parameters. 
Accurate  determination  of  β and  μ and  a 
construction  of  an  accurate  phase  diagram  are 
problematic  due  to  different  growth  rates  and 
minimum  stabilizing  in-plane  fields  across 
experimental samples. This is most likely due to 
inaccuracies  in  modeling  the  superconducting 
volume.  Due  to  being  damaged  during 
construction,  the  entire  ring  is  not 
superconducting  and  determining  the 
superconducting  portion  is  not  technically 
possible,  at  this time. This is  made abundantly 
clear by the difference between the periodicity of 
the experimental and simulated sample discussed 
in this paper. From Figure 1, the transition from 
the  zero  to  first  integer  flux  state  occurs  at 
approximately  8  Gauss.  From  Figure  6,  the 
simulated  geometry's  transition  occurs  at 
approximately 17 Gauss. This is indicative of the 
simulated  ring having a  smaller  internal  radius 
which  could  be  explained  by the  experimental 
sample's  inner edge being damaged and unable 
to enter the superconducting state. 

Work is currently being done to increase the 
available  data  in  order  to  determine,  more 
accurately,  the  phenomenological  parameter 
values  and  the  sensitivity  of  the  system's 
behavior  to changes in those values as  well  as 
the system's geometry.
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