COMSOL CONFERENCE BOSTON 2012 A Computational Approach for Optimizing the First Flyer Using COMSOL Multiphysics

Research Computing and Cyberinfrastructure The Pennsylvania State University University Park October 3, 2012 A.H. Aziz H.B. Pourzand A.K. Singh

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Objective

Flight Number	Time (sec)	Distance (feet)	Speed (mph)	Headwind (mph)
1	12	120	6.8	24
2	13	175	9.2	21
3	15	200	7.9	21
4	59	852	8.5	21

Data from Wright brothers' flight tests at Kitty Hawk on December 17, 1903

- > To cover 852 feet in a shorter time by reducing the airplane weight
- > To model the whole airplane, a large and complicated geometry
- ➤ To solve a large system: ≈10 million DOFs
- To comprehend how the solution of such large problems scales in a high performance computing environment

Testing Structural Integrity

Load on the structure:

- Weight due to gravity
- Lift
- Drag

Maintaining Structural Integrity

Two struts were removed

Maximum stress: 9.1 MPa

Maximum stress: 10.66 MPa

Effect of Torsion

Maximum stress: 1.01 MPa

Maximum stress: 2.05 MPa

Torsion Added to Flight Loads

Maximum stress: 7.96 MPa

Maximum stress: 12.02 MPa

Aerodynamic Model of the Original Flyer

- Air flow is laminar and compressible
- Wind speed is 30 mph
- Multigrid solver used
- On the right: Pressure distribution over the biplane at wind speed of 30 mph

Aerodynamic Analysis Continued

- Air flow is laminar and compressible
- Wind speed is 30 mph
- Multigrid solver used
- On the right: Velocity profile over the biplane at wind speed of 30 mph

A Simplified Dynamic Model

Equations of motions:

$$\dot{u} = \frac{F_x}{m} - Qw - g\sin\theta$$
$$\dot{w} = \frac{F_z}{m} + Qu + g\cos\theta$$
$$\dot{Q} = \frac{M}{I_{xx}}$$

Integrate to obtain the total flight time

Hardware Used

Component	Server	Quantity	Processor	Number of Processor Cores	Memory (GB)
Login Node	Dell PowerEdge R810	1	Intel Xeon E7- 8837 Eight-Core 2.66 GHz	16	256
Compute Node	Dell PowerEdge R910	1	Intel Xeon E7- 8837 Eight-Core 2.66 GHz	32	512
Compute Node	Dell PowerEdge R910	1	Intel Xeon E7- 8837 Eight-Core 2.66 GHz	32	1024

Software/Packages Used

- COMSOL Multiphysics[®] 4.3
- COMSOL Livelink[™] for SolidWorks[®]
- MATLAB[®]

Concluding Remarks

- A 3% reduction in weight of the flyer led to a 16% reduction in flight time
- Established a workflow for simulating large problems, to be used in teaching and research
- Meshing a whole airplane is a challenging task using COMSOL

Future Direction

•

Statistics

Complete mesh

Element type:	All ele	ments			
Tetrahedral elements: 10917592					
Triangular elem	174894				
Edge elements	19249				
Vertex element	ts:	646			

Domain element statistics

Number of elements:	10917592
Minimum element quality:	0.01417
Average element	0.7693
Element volume ratio:	1.341E-10
Mesh volume:	478.5 m ³
Maximum growth rate:	4.759
Average growth rate:	1.616

Element Quality Histogram

Number of Degrees of Freedom

mod1.u2: 5608119

mod1.p: 1869373

Total: 7477492

Future Work

- Include lateral-direction motion
- Use FSI with the surface (fabric) included
- Include the propellers, engine, chains, and wires in the analyses
- Further optimization (parametric sweep)
- A real time controller by linking MATLAB[®] with COMSOL Multiphysics[®]
- Post-Processing using EnSight (immersive environment)

Acknowledgements

- COMSOL Program Committee
- Vijay Agarwala, Senior Director, RCC
- Domain Software Expert group

