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Abstract Transformation elastodynamics,
the solid mechanical counterpart of transfor-
mation optics, is an approach to re-routing
of mechanical, potentially harmful transient
waves and vibrations, to protect structures
or substructures from harm. A large-scale
example would be to try to re-route seis-
mic waves, whether from ground explosions or
earthquakes, by arranging the properties of the
material beneath and around some sensitive in-
frastructure so as to mimic the surrounding soil
without any infrastructure. A less ambitious
(and considerably more realistic) application
would be to re-route elastic vibrations around
the clamping points of panels in a vehicle, so
as to minimize the noise from vibrating panels.
Just as for transformation optics, the approach
utilizes the concept of form-invariance of the
equations of motion under di↵eomorphisms to
give recipes of how graded materials can mimic
homogeneous and isotropic bodies, and cloak
the presence of structures within the transfor-
mational cloak.

We have studied the use of several types
of graded materials for cloaking, and in the
present paper we describe how graded microp-
olar materials may be used to cloak against
Rayleigh waves. We have implemented recipes
for the graded properties of a micropolar
cloak from transformation elastodynamics into
a modified version of the Structural Mechanics
module of COMSOL Multiphysics™. In numer-
ical experiments we consider how a modeled,
partially buried ‘pipeline’ may be protected
from an incident transient Rayleigh wave by
re-routing the wave under the pipeline.

1. Introduction

Less than a decade ago, it was discovered that
invisibility cloaking devices could be more than
mere fiction. Originally for a type of ‘X-ray’
technique, electric surface impedance tomog-
raphy, where a voltage distribution is applied
to the surface of a body, and resulting electric
currents through the surface are measured,
with a view to reconstructing the conductivity
inside the object. Theoretically, the interior of

the object could, under certain circumstances,
hide (or ‘cloak’) an embedded body in such a
manner that even the fact that something was
hidden would be undetectable. Soon similar
phenomena were shown to be possible also for
electromagnetic waves.

Figure 1: Some geometries where mechanical cloak-
ing might be desirable: a) Clamping point be-
tween panels. b) Buried infrastructure. c) Surface-
breaking structure.

Also in solid mechanics, there is consid-
erable interest in achieving ‘invisibility,’ how-
ever not primarily for hiding objects from
sight. Important contributions to elastody-
namic transformational cloaking have been
given by, among others [2][7][5][3][8]. Recently,
an approach to partial cloaking using fiber
composites has been explored, see e.g [9]. The
applications in mechanics include protection of
structures and parts of structures from poten-
tially harmful transient waves and steady state
vibrations, see Figure 1 for some generic exam-
ples.

Another, similar type of situation would be
ground waves from trains or other vehicles in
rapid transit. These waves could possibly be
redirected so as to protect buildings situated
too close to the tracks or roads.

A suggested larger scale application, pro-
tection against seismic waves from earth-
quakes, could be achieved by using cloaking
to re-route the waves around sensitive infras-
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tructure, cf. Figure 2. While the cost for such
a protection would be astronomical, it should
be compared to the likewise astronomical cost
in case of a large-scale collapse of e.g. a nuclear
power plant due to seismic waves.

Figure 2: A potential, very(!) ambitious, and as-
tronomically expensive application of mechanical
cloaking.

At smaller scales, an application could be
to re-direct elastic waves around e.g. clamp-
ing points for panels in vehicles or other struc-
tures, thereby achieving some noise control by
entirely passive means. On the very small
scale, protection of sensitive electronic compo-
nents from vibrations might be accomplished
by surrounding the components by a suitable
mechanical cloak.

The construction of mechanical cloaks re-
quires fine-tuning of the elastic properties of
the cloaking material, so-called meta-materials
[1]. Multiscale mechanics is the topic of con-
necting di↵erent length scales in mechanics.
For solid materials, the macroscale response
is defined through suitable microscale models
that resolve the actual topology on the lower
scale. The straight-forward question in multi-
scale mechanics (or micromechanics) is what
the macroscale response will be for a given
structure on the microscale. One classical ex-
ample is homogenization of elastic properties
for micro-heterogeneous materials [6]. How-
ever, in an inverse setting, multiscale mechan-
ics (or homogenization [4]) can also be used to
design the microstructure such that a specific
response on the macroscale is obtained.

We describe some results on simulations of
cloaking in solid mechanics. COMSOL Mul-
tiphysics™ has been used to simulate di↵er-
ent material responses. In order to apply
the anti-symmetric elasticity matrix properties
that was needed, a modification of the weak
formulation in the software was made. In the
next step, simulations of homogenization are
required of micro-heterogeneous materials to

find meta-materials suitable for producing the
required macro-properties for cloaking.

2. Governing Equations

A general (hemitropic) micropolar medium sat-
isfies the constitutive equations

� = C •• (r⌦ u� ✏ • �) + B •• (r⌦ �)
µ = BT •• (r⌦ u� ✏ • �) + A •• (r⌦ �)

and the equations of motion

r • �T = ⇢ ü

r • µT + ✏ •• � = ⌘ • �̈

The totally anti-symmetric third order ten-
sor in three diemensions may be defined as
✏ = I⇥ I, where I is the second order unit ten-
sor. The double contraction is defined so that
X •• Y = XijYij for X = Xijei ⌦ ej and Y =
Yijei ⌦ ej . Similarly K •• Y = Kijk`Yk`ei ⌦ ej
for K = Kijk` ei⌦ej ⌦ek⌦e`. C, A are major
symmetric tensors of order 4. The symmetry
is under transpose of the first and last index
pairs. We use boldface superscript T to denote
this transposition, and ordinary sans serif T for
transpose of second-order tensors. The major
symmetry requirement can thus be stated as

AT = Ak`ijei ⌦ ej ⌦ ek ⌦ e`

= Aijk`ei ⌦ ej ⌦ ek ⌦ e` = A

and similarly for C. Note that neither of
these tensors need satisfy the minor symme-
tries, whereby e.g. Cijkl 6= Cijlk in general. B
is a tensor of order 4, with no assumptions on
symmetry.

We now assume three things. First, that
the material is centro-symmetric so that B = 0.
Second, that time-harmonic conditions prevail,
with time factor exp(�i!t). And third, that
the curvature sti↵ness is much higher than the
sti↵ness with respect to strains. Then the
tensor A in some suitable sense becomes very
large, while the micro-moment tensor µ re-
mains finite.

To be slightly more specific regarding the
last point, let’s say that we e.g. have some
scalar parameter a that we let tend to positive
infinity, and that for some ✏ > 0

A = aM⇥M+O[a1�✏] as a ! +1
where M = Mijei ⌦ ej is some second or-
der tensor. (We also assume that the matrix
formed from its coe�cients Mij is invertible.)
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Here the boxed multiplication of two second
order tensors is defined as

X⇥Y = XikYj` ei ⌦ ej ⌦ ek ⌦ e`

Then, if µ is to remain finite, we must have
thatr⌦�! 0 as a ! +1, and �! constant
throughout the body. If the boundary condi-
tion is �

??
@⌦

= 0, and the limit of � is uniform,
then in the limit � must vanish throughout ⌦.

Under these three assumptions, the set of
four equations implies

� = C •• (r⌦ u) (1)

r • �T + ⇢!

2 u = 0 in ⌦, (2)

This means that, given suitable boundary con-
ditions on the displacement, stress vector and
the micro-moment tensor, the problem gives
a boundary value problem for the displament.
The field µ may subsequently be retrieved. Eq.
(1) and Eq. (2), must be supplemented by a
boundary condition

bn • �T
??
@⌦

= h (3)

where h is a prescribed vector field defined on
@⌦, and bn is the outward-pointing unit normal.

3. Cloaking Transformation

As found in a special case in [2], and more gen-
erally in [8], a body consisting of this kind of
micropolar material can mimic a homogeneous
isotropic elastic body in the following sense: If
the body inside ⌦ is micropolar with a sti↵-
ness and density that varies in a suitable man-
ner, the Traction-to-Displacement (TtD) map,
that maps h 7! u

??
@⌦

for the micropolar solid,
may be identically the same as that of a ho-
mogeneous, isotropic solid occupying the same
region ⌦.

Consider a di↵eomorphism  : ⌦ ! ⌦
such that the limit of  on @⌦ is the identity
map. Let c = cijk` ei ⌦ ej ⌦ ek ⌦ e` denote the
elasticity tensor a homogeneous isotropic elas-
tic material, and let ⇢0 be its constant mass
density, and put

Cijk`(X) = J(X)
@X

j

@x

p
cipkq

@X

`

@x

q
(4)

⇢(X) = J(X)⇢0

where

x =  (X), J(X) = det

✓
@ (X)

@X

◆
.

Note that the elasticity tensor of the microp-
olar material, with components given by Eq.
(4), does indeed satisfy the major symme-
try condition. Then we may consider the x

j

as cartesian coordinates in the homogeneous
isotropic solid, and the X

j as cartesian coor-
dinates in the inhomogeneous, anisotropic mi-
cropolar material, each occupying ⌦. If the dis-
placement field in the homogeneous material is
u(x), satisfying

@

@x

j

✓
cijpq

@up(x)

@x

q

◆
+ ⇢0 !

2
ui(x) = 0

then U(X) = u( �1(X)) satisfies

@

@X

j

✓
Cijpq(X)

@Up(X)

@X

q

◆
+ ⇢(X)!2

Ui(X) = 0

Even without special assumptions on the nor-
mal derivative of  on @⌦, it may be verified
that both tractions and displacements on the
boundary @⌦ coincide in the two cases. For
any surface excitation of the micropolar body,
the response at the boundary is the same as
for a homogeneous body. The TtD maps of
the two bodies are identical.

Figure 3: ‘Blowing up’ a point to make a hiding-
place.

By subtracting a point P in the interior
from ⌦, and choosing a di↵eomorphism such
that  �1 maps ⌦\{P} to ⌦\� where � is
some open (simply connected etc.) subset of
⌦, we may ‘hide’ an object within the microp-
olar solid by putting it inside �. The hidden
object will in essence be invisible to any elastic
waves impinging on the outer boundary @⌦.

4. Rayleigh Wave Impinging on a

Surface-Breaking Cylinder

Consider now the geometry indicated in Figure
4, where a pipeline is partially buried in the
ground.
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Figure 4: A light pipeline, partially buried in a ho-
mogeneous and isotropic ground.

We consider two types of support for the
pipeline. First the layer between the soil and
the pipeline is just made of the same homoge-
neous and isotropic material as the rest of the
ground, and the pipeline is in ‘welded’ contact
with the support. In the second case we con-
sider the intermediate layer to be made of a
micropolar material which is graded so that it
cloaks the pipeline. The di↵eomorphism cho-
sen only a↵ects the radial coordinate r, mea-
sured from the rotational symmetry axis of the
pipeline. We put  (r) = �(r)er, with �(r)
being an invertible map of r0 < r < r1 onto
0 < r < r1, where r0 is the inner radius and
r1 the outer radius of the cloaking layer. Since
we demand �(r1) = r1, the transformation (in
2D) must allow

Z r1

r0

⇢(r)r2dr =
1

2
⇢0r

2
1

which constitutes a necessary condition on the
density function. (Incidentally, this guarantees
that the total mass of the cloak is finite, and
in fact equal to the mass of the homogeneous
half cylinder it mimics.) There are of course
an infinity of transformations of this type, and
we chose one of these, namely

�(r) = r1

s
r

2 � r

2
0

r

2
1 � r

2
0

In addition to introducing the cloak, we decou-
ple the pipeline further by allowing it to slide
without friction on the cloaking layer.

In the simulations, the combined e↵ect of
the sliding BC and the cloak is to decrease the
amplitude of the movement of the pipeline in-
duced by the incident Rayleigh wave by at least
five orders of magnitude.

In Figure 5 we see two snapshots as the
(transient) Rayleigh wave impinges on the
pipeline from the left in the picture.

Figure 5: Snapshots of transient Rayleigh wave incident upon an un-cloaked, welded, and a cloaked, sliding,
pipeline, respectively. (Note that the scale of the displacement is immensely exaggerated, since we are actually
in the linear regime.) The approximate path followed by the pipeline in the uncloaked case is indicated by an
ellipse.
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In both cases the cylindrical pipeline ro-
tates on a roughly elliptical path, counterclock-
wise, but the amplitude in the cloaked, sliding,
case is so small that it cannot be discerned at
this scale. From an animation of the move-
ment, we find [2] that when the Rayleigh wave
enters the cloaking layer, it essentially ‘dives’
under the pipeline and resurfaces behind the
pipeline. In this way the cloak protects the
pipeline from potential damage.

5. Implementation and Numerics

5.1 Global Definitions

Table 1: Parameters

To implement our model into COMSOL Mul-
tiphysics™ , a number of parameters had to be
defined, as indicated in Table 1. With these
values all other important functions and pa-
rameters can be constructed and used in the
software. The radial values, r0 and r1 de-
scribe the inner and outer radii of the cloaking
region. ks and As are parameters used for
the Rayleigh wave construction in the software
while the rest are material parameters that
describe the material characteristics.

5.2 Modifications to COMSOL Multi-
physics™

In our model, the elasticity matrix is not sym-
metric as in the standard COMSOL Multi-
physics™ Structural Mechanics module. The
elasticity matrix in COMSOL Multiphysics™
is represented as in Figure 6.

Figure 6: Elasticity matrix in COMSOL Multi-
physics™ Structural Mechanics module

Figure 7: Modifying module in COMSOL Multi-
physics™

The relevant module is based on weak form
formulation, and may be modified to suit the
problem on hand. In order to implement the
non-symmetric 12 and 21 components, the
weak formulation was modified in the Linear
Elastic Material model, see Figure 7.

Table 2: Modified sti↵nesses.
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The non-zero components of the modified
elasticity matrix that were used in the model
for the anisotropic cloaking material is indi-
cated in Table 2.

5.3 Geometry

The geometry that was used needed to be
elongated, in order to simulate uni-directional
propagation of Rayleigh waves. In order to
even better model the infinite medium around
the model, perfectly matched layers (PML)
were implemented.

Figure 8: The geometry

Two di↵erent cases were simulated, one
with a sliding, a.k.a. roller, boundary condi-
tion between the massive body and the cloak,
and the other one with a welded contact and
no cloaking material, cf. Figure 8.

5.4 Mesh

Figure 9: The mesh

The time step is a crucial part of the sim-
ulation procedure in COMSOL Multiphysics™.
To illustrate this, values on ⇢, µ, and ! have
been used from the previous section. In order
to obtain a suitable illustration the time incre-
ment has to be within the following tolerance

�t  L

Cs

where L is the mesh element size, Cs =p
µ/⇢ = 1m/s, is the shear wave speed and

�t is the time increment. In suitable units,
the time increment will thus only depend on
the element size: �t  L.

5.5 Results

In our model we used the time-dependent
solver in order to see the e↵ects of Rayleigh
wave propagation. The simulation ended at
10s with a time-step of 0.1s which was chosen

to be less than the element size and su�ciently
small, balancing accuracy against computing
time.

Figure 10: Movement of pipeline in welded contact
with homogenous material

Figure 11: Movement of pipeline rolling on a mi-
cropolar cloak

Comparing the movements in the two cases,
we see that the cloak in conjunction with
rolling (or sliding) boundary conditions de-
creases the induced oscillation of the pipeline
with many orders of magnitude! Already the
use of rolling contact in fact brings a consid-
erable decrease of the induced movement, but
the details of this will be reported elsewhere.

6. Concluding Remarks

Summing up, we have found that elastody-
namic cloaking from Rayleigh waves is theoret-
ically possible, using a certain limiting type of
such materials. However, this should come as
no great surprise, as it has already been shown
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that cloaking against bulk waves is possible in
that manner. In fact, the Rayleigh wave at a
horizontal plane may be represented as a linear
combination of such waves, albeit with imag-
inary wave numbers in the vertical direction.
COMSOL Multiphysics™ proved to be useful,
after some modification, to perform the mod-
eling of this type of cloak.

We are presently also studying several al-
ternative approaches to minimizing movements
induced by elastic surface waves, and a com-
parison will be published elsewhere.

References

[1] B. Banerjee. An Introduction to Metamate-
rials and Waves in Composites. CRC Press,
2011.

[2] M. Brun, S. Guenneau, and A. B. Movchan.
Achieving control of in-plane elastic waves.
Applied Physics Letters, 94:1–3, Oct 2009.

[3] M. Farhat, S. Guenneau, and S. Enoch.
Ultrabroadband elastic cloaking in
thin plates. Physical Review Letters,
103(2):024301, Jul 2009.

[4] M. Geers, V. Kouznetsova, and W. Brekel-
mans. Multi-scale computational homoge-
nization: trends & challenges. Jnl. Comp.
Appl. Math., 234(7):2175–2182, 2010.

[5] G. W. Milton, M. Briane, and J. R. Willis.
On cloaking for elasticity and physical
equations with a transformation invariant
form. New Journal of Physics, 8:1–21, Oct
2006.

[6] S. Nemat-Nasser and M. Hori. Microme-
chanics: Overall properties of heteroge-
neous materials. Elsevier, 1993.

[7] A. N. Norris. Acoustic cloaking the-
ory. Proceedings of the Royal Society A,
464:2411–2434, Oct 2008.

[8] A. N. Norris and A. L. Shuvalov. Elastic
cloaking theory. Wave Motion, 48:525–538,
2011.

[9] P. Olsson and D. J. N. Wall. Partial
elastodynamic cloaking by means of fiber-
reinforced composites. Inverse Problems,
27(4):045010, 2011.

7

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan




