Modeling of nutrient transport through porous Tissue engineering scaffold

Srivatsa NM. Bettahalli^{1,2}, Bernke J. Papenburg², Dimitris S. Stamatialis², M. Wessling^{2,3}

- 1. BMS College of Engineering, Chemical engineering department, Bull temple road, Bangalore 560019, India
- 2. University of Twente, Membrane technology group (MTG), 7500 AE Enschede, The Netherlands
- 3. RWTH Aachen University, Chemical Process Engineering, Turmstrasse 46, 52064 Aachen, Germany

Necrosis in Tissue engineering scaffolds

Today's challenge in Tissue Engineering is building a 3D scaffold of clinical relevance with efficient nutrient transport to the core to minimize necrosis. Necrosis causes non-homogenous tissue formation with cells concentrated at the periphery of the scaffold.

Casting polymer solution Phase separation Mold fabrication **Release of polymer film**

Fig. 1 Illustration of PSµM flat sheet membrane casting method

Phase separation micromolding (PSµM) (Fig 1) is a process to fabricate porous micro-structured membranes [1]. The channels can be designed to mimic the cell density and alignment within the actual tissue.

Fig. 2 (a) SEM picture of PLLA flat sheet porous membrane, (b) Light *microscope picture after 4 days of culturing (cell density = 25000cells/cm²)*

The porous structure within the membrane is used to transport the nutrient (Fig 2a). In-vitro mouse myoblast (C2C12) cell culture experiments (Fig 2b) show the confluent cell growth and alignment within the channels.

Finite Element Method Model

Model parameters

Theoretical analysis of the flow of nutrients through single channel (Fig 3a) are evaluated using COMSOL Multi-

Cell density	80% of channel area
Bulk concentration	0.055 mol / m ³

physics. The estimated concentration profile indicate efficient nutrient transfer at different time interval (Fig 3b). Similarly Fig 3c depicts mass transfer in a 3D scaffold of 2 cm³.

Fig 3. (a) SEM picture of staked PSµM flat membrane, (b) The predicted concentration profiles through a single channel at different time intervals,

(c) Concentration profile through a 3D scaffold of 2 cm³

Conclusion & Outlook

- The model predicts efficient nutrient transfer within the flat porous membrane and in 3D scaffold of 2cm³
- These porous 3D scaffold could be potentially used for tissue engineering constructs and avoid necrosis
- In-vitro cell culture experiments to confirm the theoretical evaluations (in progress)
- Investigation for better seeding techniques, membrane staking and bioreactor design

<u>**References**</u> : [1] Vogelaar, L., et al. Advanced Materials 15-16 (2003), pp. 1385-1389 ; [2] Hua Ye, et al. Journal of Mem Sci. Vol 272, Issue 1-2, page 169-178

Excerpt from the Proceedings of the 2012 COMSOL Conference in Bangalore