COMSOL CONFERENCE INDIA 2012

A study on nutrient mass transport through porous channeled flat sheet membrane &

Prediction of scaffold thickness for viable cell culture (in-vitro) by 3D modeling for Tissue Engineering application

N.M. S. Bettahalli^{1,2}, B.J. Papenburg ¹, D.S. Stamatialis ¹, M. Wessling ^{1,3}

¹ University of Twente, Enschede, The Netherlands

² B M S College of Engineering, Bangalore, India

³ RWTH Aachen University, Aachen, Germany

What & Why - Tissue Engineering?

- Demand for donor organs
- Aging population
- increasing surgical procedures, wound care etc.
- In vitro toxicity testing to replace animal testing

Oxygen depletion in TE 3D scaffolds [*]

Schematic representation of the FFF construct, the sample location A,B and C

Cell distribution within construct cultured for 28 days

Oxygen concentration within cartilaginous constructs cultured for (a) 14 (b) 27 (c) 41 days on FFF scaffold

[*] J. Malda, J. Rouwkema, D. E. Martens, E. P. le Comte, F. K. Kooy, J. Tramper, C. A. van Blitterswijk, J. Riesle, *Oxygen gradients in tissue-engineered Pegt/Pbt cartilaginous constructs: Measurement and modeling*, Biotechnology and Bioengineering, 86(1), Pages (9-18)

<u>Issues</u>

- How can you supply sufficient nutrients throughout the whole scaffold?
- How to mimic natural tissue organization?

Our solution

- Method: PSμM What can it do for TE?
- Stacking /layer-by-layer technology
- Modelling for prediction of maximum 3D scaffold thickness with viable cell culture

PSµM - (Phase Separation Micro-Moulding)

SEM picture of PLLA flat sheet porous membrane

Light microscope picture after 4 days of culturing (Cell density = 25000cells/cm²)

SEM picture of Staked flat sheet porous membrane

Nutrient transport

CFD Modeling using COMSOL

Cell density	80% of channel area
Bulk concentration	0.055 mol / m ³
Diffusion coefficient	8.4 X 10 ⁻¹¹ m ² /sec
Consumption rate	3.83 X 10 ⁻¹⁶ mol/m ³ .sec.cell

Assumptions

- Spherical cells
- Uniform pore distribution
- No lateral mixing
- Change in nutrient concentration is neglected

Concentration profile in a channel

Model representing the concentration profile through a single channel at different time intervals

3D Concentration profile

Outcome

- PSµM membranes provide sufficient nutrient transport for cell proliferation
- PSµM can be used to align cells or mimic natural tissue organization
- The model predicts efficient nutrient transfer within the staked flat porous membrane
- Porous 3D scaffold of PSµM membrane stake could be a possibility as TE constructs

Acknowledgement

Thanks to,

INSTITUTE FOR BIOMEDICAL TECHNOLOGY AND TECHNICAL MEDICINE

for financial support

Colleagues at,

for continuous support

Glucose diffusion

PLLA - dioxane, 5 wt%, EtOH, T_{non-solvent} decreased

Porosity ~ 84%

 Glucose diffusion (after 24 hr): 88%

Nutrient transport

Concept for 3D cell culture

Stacking porous micro-patterned sheets

Micropattern → cell growth & alignment

Inner-porosity → nutrient transport

