COMSOL Conference INDIA 2012

Effects of Structural Forces on the Dynamic Performance of High Speed Rotating Impellers.

Gowrava Shenoy B, Manipal Institute of Technology Dr. B S Shenoy, Manipal Institute of Technology Dr. Raj C Thiagarajan, ATOA Scientific Technologies

ATOA Scientific Technologies

Excerpt from the Proceedings of the 2012 COMSOL Conference in Bangalore Multiphysics CAE for Innovation TM

ATOA Scientific Technologies (ATOAST)

- Engineering Simulation Solution Provider for First Time Right Design.
- Bridge Atom to Application to Proliferate Simulation (Multiphysics, Multiscale & multimaterial) for cost effective Innovation.
- ATOAST's Technical Vision is Driven by Material Unity
- ATOAST Global with HQ's in Bangalore
- India's First COMSOL Certified Consultant
- ATOAST JYOTHI Foundation empowers our social mission.

Introduction

- Rotor dynamics- Applied Mechanics-Study of Behavior and Diagnosis of Rotating Structures.
- Includes Rotating Structures -Jet engines, Gas Turbines, Pumps- Computer Storage Disk, Micro Turbines.
- Rotating-Rotor, Supporting
 Stationary-Stator.
- Campbell Diagram-Plot of Whirl Freq. vs Spin Speed.

Pic- Gas Turbine

source- wikipedia.org

3

ROTOR DYNAMICS LOADS

- Traditional Rotor dynamics Linear Structural Loads-Dominant.
- For safe and efficient performance
- Nonlinear Structural Loads
- Thermal Loads
- Fluidic Load

Application- Micro and High Performance Turbines

 Objective- "To Evaluate Dynamic And Vibration Performance Of High Speed Rotors Efficiently Considering Coriolis Forces With Centrifugal Force".

Multiphysics Rotor Dynamics

- Beam and Shell elements used in Most common Traditional Rotor Dynamics softwares.
- For Complex Geometry 3D Rotor Dynamics- For improved accuracy. Eg. Impeller
- 3D rotor dynamics
 - The stress stiffening and softening effects
 - Coupling effects of shaft and rotor
 - Actual and Accurate geometry based modelling can be leveraged.
- 3D CAD geometry based Multi Body Rotor Dynamics for accurate performance prediction.

Governing Equations

- Fundamental Physical Law governing Vibration-Newton's Second Law.
- DE- The Force Balance Equation- Linear Dynamic System
 First Principle Motion Equations.
- Linking The Inertial, Damping, Elastic And External Forces, Along With Mass, Damping And Stiffness Properties, As Given Below

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

$$[M][\dot{x}]+[C][\dot{x}]+[K][x]=[R]$$

$$Where,$$

$$[K], Global stiffness matrix$$

$$[x], Displacement vector of all the nodes$$

$$[C], Global Damping matrix$$

$$M[\dot{x}], Clobal Damping matrix$$

$$M[\dot{x}], Clobal force or load vector, where, R is f(t)$$

Comsol Implementation

 To calculate Centrifugal Force (Fcent) and Coriolis Forces (Fcor) following eqn

$$\begin{split} F_{\text{cent}} &= -\rho \Omega^2 \mathbf{e} \times \mathbf{e} \times (\mathbf{r} - \mathbf{r}_0) \\ F_{\text{cor}} &= -2\rho \Omega \mathbf{e} \times \mathbf{v} \\ F_x &= -\rho \Omega^2 (e_y(e_x y' - e_y x') - e_z(e_z x' - e_x z')) - 2\rho \Omega (e_y v_z - e_z v_y) \\ F_y &= -\rho \Omega^2 (e_z(e_y z' - e_z y') - e_x(e_x y' - e_y x')) - 2\rho \Omega (e_z v_x - e_x v_z) \\ F_z &= -\rho \Omega^2 (e_x(e_z x' - e_x z') - e_y(e_y z' - e_z y')) - 2\rho \Omega (e_x v_y - e_y v_x) \end{split}$$

Where

- 'Ω' fixed angular velocity for a system rotating about a fixed unit-length axis 'e',
- 'r' and 'v' are the position and velocity of a material element, respectively,
- 'p' is its density and 'r_o' is any point on the axis of rotation. The model rotational axis is 'z' for this **7** simulation

Design of Experiment

- Case a: Single disk rotor,
- Case b: Micro single disk rotor,
- Case c: Double disk rotor,
- Case d: Counter Rotating Rotor
- Assumption-Rigid Bearing and Flexible Shaft/Rotor.
- The vibration characteristics- for a rotational speed about 15000 RPM.
 (75000RPM-MicroTurbine).

8

Design of Experiment

- Determine the natural frequency and mode shapes for critical speeds. Effect of Coriolis force, Scale Effect investigated.
- Total of 8 DOE runs considered for vibration performance evaluation and comparison.
- Using Campbell diagram-Vibration Performance investigated as function of rotating speed.
- These cases were selected to finalize the concept for a new turbine.

9

Result and Discussion Mode Shapes of 4 Cases

Omega(1)=0 Eigenfrequency=956.148137 Surface: Total displacement (m)

Omega(1)=0 Eigenfrequency=956.148137 Surface: Total displacement (m)

Omega(1)=0 Eigenfrequency=295.199027 Surface: Total displacement (m)

Omega[1]=0 Eigenfrequency=289.722215 Surface: Total displacement (m)

Campbell Diagram of single disk rotor

Change in Behavior - High Speed with effect of Coriolis Forces

Natural Frequency (Hz)

Campbell Diagram of micro single disk rotor

Campbell Diagram SF 0.01 CF0

Campbell Diagram SF 0.01 MSD CF1

a) without effect of Coriolis forces

b)with the effect of Coriolis forces.

- Natural frequency almost constant -lower rotational speed without the effect of Coriolis forces.
- With effect of Coriolis forces significant changes in pattern -increased rotational speed

ATOA Scientific Technologies Multiphysics CAE for Innovation [™] | www.atoastech.com |COMSOL 2012| Rotor Dynamics 12

Campbell Diagram of Counter Rotating disk rotor

a) without effect of Coriolis forces

b) with the effect of Coriolis forces.

- Dual frequency behavior observed.
- Coriolis effects observed at high speed

Campbell Diagram of Double disk rotor

- The natural frequency increases with rotation speed.
- The Coriolis force effect at high rotational speed.

Conclusions

- The overall vibration characteristics as a function of structural forces were investigated and reported.
- The single disk rotor was shown to increase frequency with rotation speed.
- The Coriolis forces were shown to lower the frequency at higher rotational speeds.
- The counter rotating disk was shown a dual frequency vs rotation speed behaviour.

Scope for Future Work

The effect of fluidic (aero and hydro) and thermal forces along with structural forces will be investigated
 in the future work .

Questions??

