

Modeling Acoustic Interface Wave Dispersion Using COMSOL

Benjamin Goldsberry and Marcia Isakson The University of Texas at Austin

Gopu Potty and James Miller University of Rhode Island

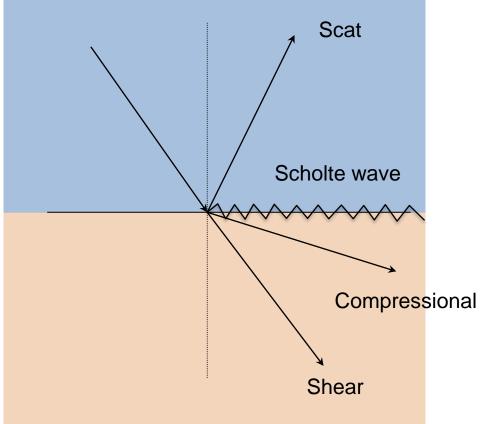
Email: goldsbe@arlut.utexas.edu

Work supported by the Office of Naval Research, Ocean Acoustics

Outline

- Motivation
 - Geo-acoustic Parameters
 - Scholte Waves
 - Experiment
- COMSOL Modeling
 - Geometry
 - PML considerations
- Post-processing
 - Spatial Transform
 - Comparison with data

Motivation



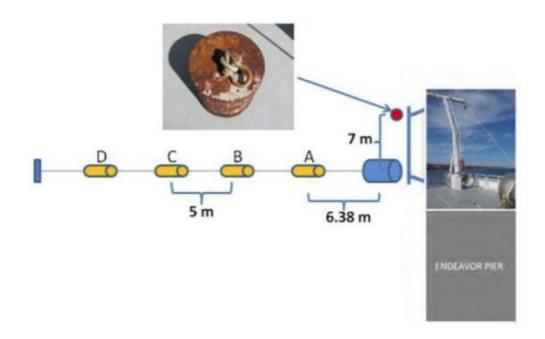
- Require accurate models of sediments in shallow water environments
- Compressional wave speed and density are easy to measure
- Need to incorporate shear waves in sediments for accurate numerical modeling
- Shear wave speed hard to measure due to high attenuation.
- Direct relationship between shear wave and Scholte wave
 - Scholte wave measurements → shear wave speeds

Motivation

- Scholte wave phase speed is ~90% of the shear wave speed
- Elliptical particle motion
- No low frequency cutoff

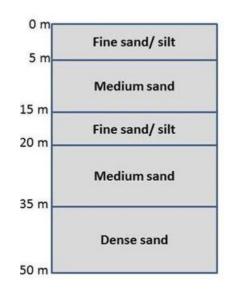
Motivation

- Scholte wave phase speed is frequency-independent in an elastic half-space.
 - For a seafloor composed of layered sediments,
 Scholte wave phase speed is dispersive.


- Can use Scholte wave dispersion to invert for shear wave speeds in each sediment layer.
 - Dynamic stiffness matrix inversion model

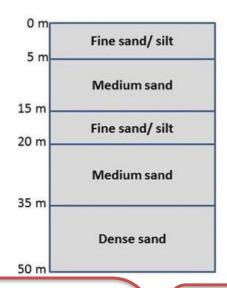
Experiment

Plan view:

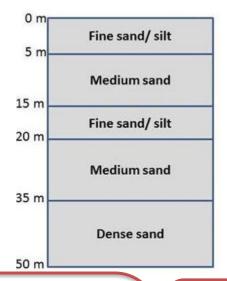


G. Potty and J. Miller. Measurement and modeling of Scholte wave dispersion in coastal waters. In Proc. of Third Int. Conf. on Ocean Acoustics, Beijing, China, 21-25 May 2012.

Experiment

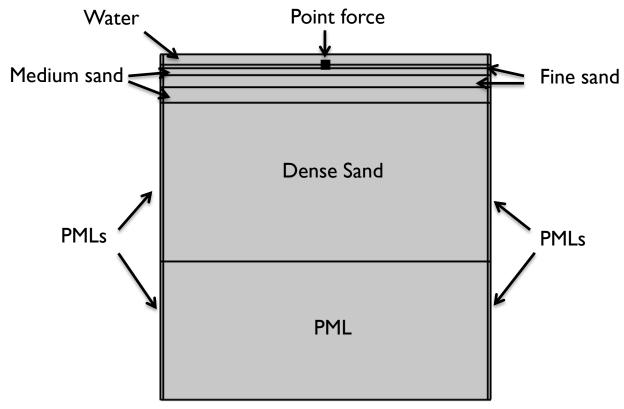


Medium	Layer thickness (m)	$c_p(m/s)$	c_s (m/s)	$\rho (kg/m^3)$
Water	6	1540	-	1000
Sediment				
Layer1	2	1600	45	1650
Layer 2	4	1650	100	1840
Layer 3	7	1600	170	1710
Layer 4	9	1650	250	1940
Half-space	∞	1836	380	2034


Core sample analysis

Medium	Layer thickness (m)		$c_p(m/s)$	c_s (m/s)	ρ (kg/m³)
Water	6		1540	-	1000
Sediment		П			
Layer1	2	П	1600	45	1650
Layer 2	4	П	1650	100	1840
Layer 3	7	П	1600	170	1710
Layer 4	9		1650	250	1940
Half-space	∞		1836	380	2034

Experiment


Dynamic stiffness matrix inversion

Core sample analysis

Medium	Layer thickness (m)	$c_p(m/s)$	c _s (m/s)	$\rho (kg/m^3)$
Water	6	1540	-	1000
Sediment				1 1
Layer1	2	1600	45	1650
Layer 2	4	1650	100	1840
Layer 3	7	1600	170	1710
Layer 4	9	1650	250	1940
Half-space		1836	380	2034

- Pressure Acoustics, Frequency Domain: Water
- Solid Mechanics, Frequency Domain: Sand layers

• Interface conditions:

$$d = \nabla \Phi + \nabla \times \Psi$$

Total particle displacement in elastic

$$\frac{1}{\rho\omega^2}\frac{\partial p}{\partial n} = \nabla\Phi\cdot\hat{n} + (\nabla\times\Psi)\cdot\hat{n} \qquad \text{Continuity of vertical displacement}$$

$$p=\sigma_n$$
 Continuity of normal stress

• Interface conditions:

$$d = \nabla \Phi + \nabla \times \Psi$$

Total particle displacement in elastic

$$\frac{1}{\rho\omega^2}\frac{\partial p}{\partial n} = \nabla\Phi \cdot \hat{n} + (\nabla \times \Psi) \cdot \hat{n}$$

Continuity of vertical displacement

$$p = \sigma_n$$

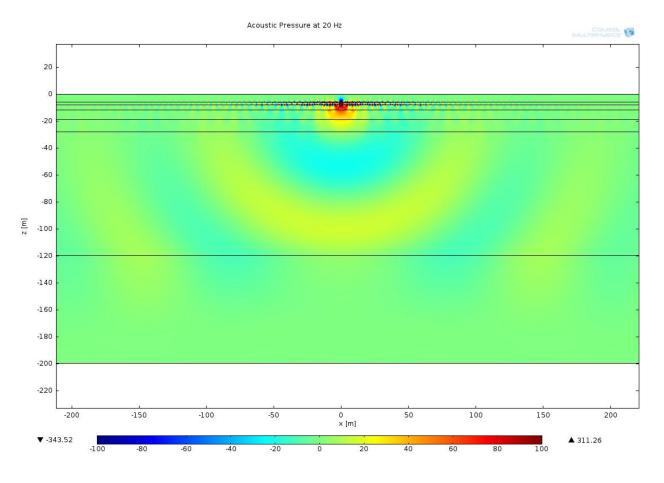
Continuity of normal stress

Pressure Acoustics: Normal acceleration node

Solid Mechanics: Boundary load node

- Source
 - Solid Mechanics: point load node
 - Mass of weight x gravitational acceleration

- Mesh criterion
 - Based on smallest wavelength (shear)
 - Maximum element size: $\lambda/8$



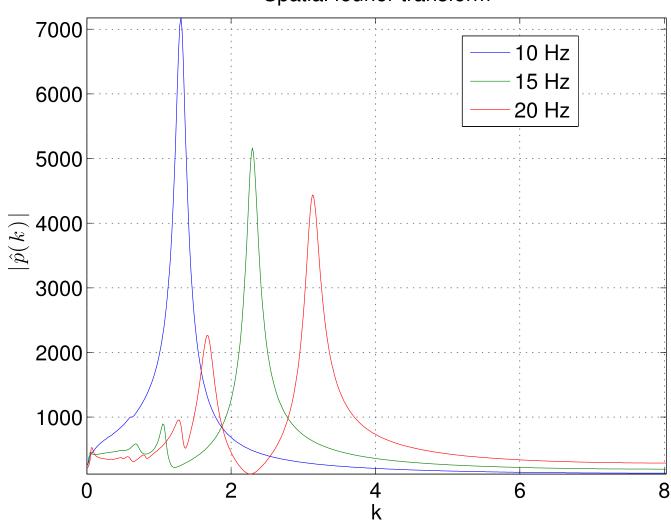
 PMLs do not effectively absorb Scholte waves and un-attenuated shear waves in elastic media.

- PML considerations:
 - Attenuate shear wave and use PMLs to only absorb compressional wave.
 - Make computational domain long enough so the Scholte wave is mostly dissipated at the boundary

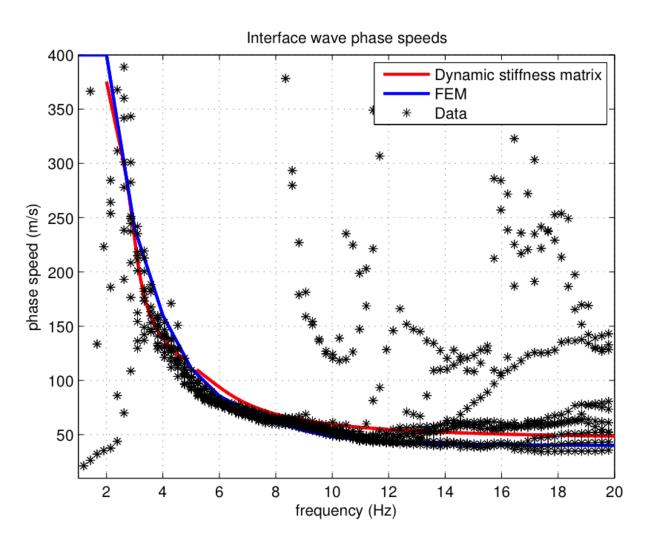
Post-processing

Spatial Fourier Transform

$$\hat{p}(k) = \int_{-\infty}^{\infty} p(x)e^{-i2\pi kx}dx$$


$$c_{ph} = \frac{2\pi f}{k}$$

Post-processing


Spatial fourier transform

Post-processing

Conclusion

 COMSOL used to model experiment at Narragansett Bay, RI.

 A spatial Fourier transform was used to calculate phase speeds

 Computed phase speeds agree well with measured data.