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Abstract 
     We formulate a new mathematical model for a 

combustion chamber hydrodynamic fluid bed system 
(CFB) in thermal coal or solid waste power plants.  

 This mixture model is based in conservation equations 
(mass and momentum). This model gas - solid  is 
obtained from two-phase hydrodinamic model, which 
takes into account a parameter ε (ratio densities 
gas/solid), it generates a free boundary problem. 

 Making an asymptotic adjustment and uncoupling of 
the dependent variables, then this problem has 
solution. The numerical simulation in 2D is 
implemented with COMSOL Multiphysics. 
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INTRODUCTION 
SQUEME  SYSTEM CFB [6] 



1. Problem Formulation 
  

Antecedent: The  interphase momentum transfer 

between the two phases represented by the drag 

force, play an important role in any multiphase 

flow approach. Due to its high relevance, this 

phenomenon was frequently investigated in the 

literature. The ultimate goal of these work was to 

get an optinum drag model for betters fluidized 

bed hydrodynamics. 

 The volume fractions  conservation equations 

are related as: 
 1 gs 



Equations two phases of Gidaspow,  
Syamlal & O’Brien  

The simulation results showed that the drag models of 

Gidaspow and Syamlal & O’Brien highly overestimate the gas-

solid drag force for the CFB the particles could not predict the 

formation of dense phase in the fluidized bed [2]. 

• Mass conservation equations 

 

• Momentum  conservation equations 

 

 



  

The conditions are characteristic of fast fluidization [1 ], [4] 



A gas injection grid of Chamber 
CFB 

    Inlet Grid of pipes 



Two Phases Model Drew [2] 
• Phase Gas:  

• t n+div(nu) = 0                         (1) 

• t(nu)+div(nuu+pgI) = div(2gnD(u))+ng-qm(u-v)   (2) 

• Phase Particle  

• t m+div(mu) = 0                      (3) 

• t(mv)+div(mvv+ppI) = div(2pmD(v))+mg+qm(u-v)   (4) 

•    = g/p,  =p ; n = n(), m = m(), u = u(), v = v() 

• D(w) = ½[grad(w)+(grad(w))T] 

 

 



Assuming the existence of an indicator that measures the ratio 
of proportionality between the densities of the two phases, in 
particular the parameter   such that  0<<<1.   
= g/p,  =p ; n = n(), m = m(), u = u(), v = v().  
When 0, result the following  mathematical model which is 
compressible apparently. 
 t+div(v) = 0    (5) 
t(v)+div(vv) + P = div(D(v))+ g         (6) 
ph = -q()(u-v)               (7) 
div((1-)u+v) = 0              (8) 
where  P = pc+ph. 

2. Theoretical Analysis  and 

Contribution 



 

• Equation of state 

• pc()=oexp[k/(*-)], o1, 0  *<1 (10) 

 

• Equation for the drag force between phases: 

• q() = Cq/(1-)s, s >0, s[1.4, 3.6]  (11) 

  

 

D(w) = ½[grad(w)+(grad(w))T]                 (9) 



  

• Let t an open subset of [R3
+ x [0,>],  

• 0 = {x = (x1, x2, t) R3/ t > 0},                      (2.1) 

• t = { (x1, x2, t)R3/( x1, x2 ) Ω, 0≤t<},   (2.2) 

 

 

• The problem is to find the volume fraction of 
particles C1(t ) C0 ( t), velocity of the  

2R



• solid particles velocity  vC2,1(t)[C1,0( t)]
d, 

and gas velocity represented by  

  u[C1,0(t )]
d[C1,0( t)]

d. 

• The problem is considered hydrodynamic 
pressure phC1,0(t) C0( t), from the state 
equation (5)- (9), to  d= 2, d is the dimension 
of the space of the dependent variables, this 
vector functions that vary in space and time, 
which satisfy the system of equations  
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Conservative  Form Two phase 

Compresible  Model 



If v=(v1,v2)=0  

• pc = g (colitional  pression gradient) 

• ph = -q()u (hydrodinamic  pression 

gradient) 

 

• div((1-)u) = 0 

• M = ((1-)u)  

• P = 0 

 



Contribution 1: Non conservative  
of the mixture model 

U(x,y,t) =  (u1 = , u2 = v,  u3 = u)  
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•  Boundary conditions 

• [(1-)u+v)]. n = M>0 C0( 0 x [0, >)      (2.3) 

• [v].n= m0 C0( 0 x [0, >)                         (2.4) 

• [vv + PI - D(v)].n  = 0 C0( 0 x [0, >) 

 Is this a boundary free problem  

• Initial conditions 

• (x,0) = 0(x,y)  C0(R2
+ x {0,T})                    (2.5) 

• v(x,0) = v0(x,y) [C0(R2
+ x {0,T}]2                            (2.6) 

 Cauchy problem 



Contribution 2: Conditions to solve 
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3. Numerical Analysis 

• The work consists of the construction of a numerical 
model for the quantitative study of the problem. This 
includes formulation of decoupling techniques. The 
solution of the variational problem in space-time, 
singularized the discreta inestability in time during the 
process computational. 

• To overcome this difficulty we have used  the Galerkin 
method with a numerical technique to capture the 
discontinuities in the Stream Lines Difussion (SD)  with  
finite elements of type  P1 + P2 ([5], [6]). 



In the two-dimensional case, after a process 
dimensionless introducing a vector function of 
states , thus the Conservative system  in 
variational  form convective-diffusive-reactive 
flow in  the domain  located in a rectangular 
geometry region Ω = ((0,L)x(0,H)))x[0,T) 

Boundary condition:  Inlet  (imput) and Wall 

 Initial condition: Step 

Stabilization :  SD Numerical Method , this is 
expressed by: 

 



Application: Discretization Stream Diffusion 

capturing Method ( [3], [6])  
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Numerical Resolution: Using 
COMSOL Multiphysics 

• In the two-dimensional case approximates the 
solution of the problem, then the method 
Galerkin stabilized stream Difussion (SD) and a 
difference scheme (BDF) for the variable 
explicit Capture and temporal discontinuities 
of singularities in the streamlines of the 
convective flow, can be improved with a 
remesh evolutive with h= {10-4 , 10-3 } side 
length element maximum and minimum and 
with a resolution of 0.25 of curvature. 

 



 
 4. RESULTS 

Parameters 



Geometry 



Hadamard R.  Model Type 



Finite Element type P1+P2 



Finite Elements, shape function 



Stabilization SD 



 
 Domain fixed CFB 

 The axial section of the is represented in the XY plane. 
 



Initial mesh  



Remeshing finite Element 



Pressure isolines 



A nozzle 



Multiple nozzles 
  



Multiple nozzles 



Conclusion 
1. The spectrum of the color palette, particles (red) and only 

gas flows (blue), a speed minimum fluidization of the results 
observed with the increase in the flow in bed, manifests a 
state of suspension caused by the upward flow gas by one 
and  multiple nozzles. This flow creates drag force (inertial 
force) which balances gravity and terminal velocity which is 
manifested in the rate of free of the disperse phase.  

2. The minimum speed is observed when bubbling the first 
bubble ppears, this is important because it causes the 
homogenity mixing  Solid -Gas. 

 



3. The convergence criteri is obtained  when there  expansion 

homogeneous mixture, ie. 
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