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Introduction: Terahertz frequency (1012 Hz) 
radiation has uses in bio-sensing, non-invasive 
package inspection, and for the next generation of 
electronic circuits.  However, compact and 
portable methods to generate THz radiation are 
needed.  Guided wave THz generators can 
address this need. 

Computational Methods : Opt ical wave 
propagation and nonlinear interactions in the 
device are modeled using the time-dependent 
transient solvers in the RF module, as governed 
by: 
 
 
 
 
 
 
The input electric field is modeled as a Gaussian: 
 
 
 
 
 
 
 
 

Results: THz radiation is produced by optical 
rectification (OR) and collected at the right-
hand output boundary of the waveguide. 

Conclusions 
  THz generation in a waveguide can be 

simulated in the time-domain, matching results 
predicted by the full coupled wave theory [1]. 

  Improvements need to be made in handling 
THz loss via complex indices of refraction, 
instead of electrical conductivity. 
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UV curable epoxy (NOA 81) 

Electro-optic polymer (DR1-MMA 10%) 

UV curable epoxy (NOA 81) 

Aluminum 

Aluminum 2 µm 

2 µm 

3.5 µm 

3.5 µm 

3 µm 

175 µm 

Near –IR pulse 

   

∇ × 1
µr

∇ × A( ) + µ0σ
∂A
∂t

+ µ0

∂
∂t

ε0ε r

∂A
∂t

−Dr

⎛
⎝⎜

⎞
⎠⎟
= 0

where Dr = d33Ey
2ŷ  accounts for the nonlinearity.
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DR1:MMA"10%" (1.56673)2" 1" 0"
NOA"81" (1.55700)2" 1" 0"
Aluminum" (2.77198)2" 1" 3.774x107"
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E0 = peak amplitude = 30 kV/m 
w0 = minimum pulse radius = 1.5 µm 
ω0 = central frequency = 3.6×1015 s-1 (820 nm)  

τ0 = pulse duration = 10 fs 
d33 = nonlinear coefficient = 1 x 10-17 F/V 
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Figure&4.&&Total"THz"power"created"along"the"waveguide.""At"longer"
propagaMon"lengths,"THz"absorpMon"overcomes"the"generaMon."

Figure&3.&&THz"spectral"amplitude"for"various"propagaMon"lengths."

Figure&2.&&Time"domain"electric"field"at"waveguide"output"(leR)"and"its"
spectral"amplitude"(right)."


