

Multigrid Implementation in COMSOL Multiphysics

- Comparison of Theory and Practice

Wolfgang Joppich University of Applied Sciences Bonn-Rhein-Sieg Grantham Allee 20 53757 Sankt Augustin

How can you easily destroy your modeling effort?	Choose an inadequate solver or a badly parameterized one!
How can you avoid this?	
	You need knowledge on numerical methods – at least confidence in implemented solver techniques.
How can you obtain this?	
	Let the results for accepted model problems convince you about properties of a particular solver. Here: geometric MG .
If you like this	"COMSOL solver tuning" (May 2014, Berlin). More general, more solver.

MG – a combination of **smoothing**

CGC

What would we like to have for a MG solver?

- steady convergence rate (both error and residual reduction) from the first cycle till the last one
- "h-independent" convergence
- fast convergence
- convergence depends on the quality of smoothing
- linear complexity O(N)
- moderate memory requirement₅_
- faster than other solver

Poisson equation: $\varepsilon_x \frac{\partial^2 u}{\partial x^2} + \varepsilon_y \frac{\partial^2 u}{\partial u^2} = f(x, y)$ mit $\varepsilon_x = 1.0, \varepsilon_y = 1.0$					
6.008.001 d	.o.f.				
smoother	time	no. of	time per	ϱ_{comsol}	v. mem.
	[s]	cycles	cycle		(GB)
SOR	175	10	2.8	0.046	17.0
SOR	181	9	3.9	0.040	15.6
SOR	184	9	4.3	0.040	15.7
SSOR	195	10	3.7	0.053	15.9
SSOR	197	9	5.6	0.048	15.0
SSOR	203	9	6.3	0.048	15.0
Vanka	196	10	4.8	0.053	18.0
Vanka	205	9	6.1	0.048	18.0
Vanka	210	9	6.9	0.048	18.0
	: $\varepsilon_x \frac{\partial^2 u}{\partial x^2} +$ 5.008.001 d smoother SOR SOR SOR SSOR SSOR SSOR Vanka Vanka Vanka	: $\varepsilon_x \frac{\partial^2 u}{\partial x^2} + \varepsilon_y \frac{\partial^2 u}{\partial y^2}$ 5.008.001 d.o.f. smoother time [s] SOR SOR SOR SOR SOR 175 181 184 184 SSOR 195 SSOR 195 SSOR 197 SSOR 203 Vanka 205 Vanka 210	: $\varepsilon_x \frac{\partial^2 u}{\partial x^2} + \varepsilon_y \frac{\partial^2 u}{\partial y^2} = f(x,$ 5.008.001 d.o.f. smoother time no. of [s] cycles SOR SOR SOR SOR SOR SSOR 195 10 9 10 SSOR 195 10 9 SSOR 197 9 SSOR 203 9 Vanka 205 9 Vanka 210 9	: $\varepsilon_x \frac{\partial^2 u}{\partial x^2} + \varepsilon_y \frac{\partial^2 u}{\partial y^2} = f(x, y)$ mit ε_x 5.008.001 d.o.f. smoother time no. of time per [s] cycles cycle SOR SOR SOR SOR SOR SOR 175 10 9 4.3 3.9 4.3 SSOR 195 10 3.7 SSOR 195 10 3.7 SSOR 195 10 3.7 SSOR 197 9 5.6 SSOR 203 9 6.3 Vanka 205 9 6.1 Vanka 210 9 6.9	$\begin{array}{c c} \varepsilon_x \frac{\partial^2 u}{\partial x^2} + \varepsilon_y \frac{\partial^2 u}{\partial y^2} = f(x,y) & \text{mit } \varepsilon_x = 1.0, \varepsilon_y \\ \textbf{5.008.001 d.o.f.} \\ \textbf{smoother time no. of time per } \varrho_{comsol} \\ \textbf{SOR } & \textbf{[s] cycles cycle} \\ \textbf{SOR } & \textbf{[s] } \textbf{cycles } \textbf{cycle} \\ \textbf{SOR } & \textbf{[s] } \textbf{9} & \textbf{3.9} \\ \textbf{SOR } & \textbf{175 } \textbf{10} & \textbf{3.7 } \textbf{0.046} \\ \textbf{0.040 } \\ \textbf{0.048 } \\ \textbf{0.053 } \\ \textbf{0.048 } \\ \textbf{0.053 } \\ \textbf{0.048 } \\$

Poisson equation: $\varepsilon_x \frac{\partial^2 u}{\partial x^2} + \varepsilon_y \frac{\partial^2 u}{\partial y^2} = f(x, y)$				What predicts theory?		
"free triangular mesh": 8.786.945 (8L), and 35.1				the weighted relaxation fact	Jacobi-me or 1.0 has	ethod with s no
solver	smoother	total time (seconds)	no. cycl	good smoothi Poisson equat	ng proper tion, best	ty for the with 0.8
MG-W(2,1)-7L	Jacobi $\omega = 1.0$		5		divergence	
MG-V(2,1)-8L	Jacobi $\omega = 1.0$	84	29	1.1	0.402	8.7
MG-V(2,1)-8L	Jacobi $\omega=0.8$	71	17	1.1	0.194	8.6
MG-F(2,1)-8L	Jacobi $\omega=0.8$	77	17	1.4	0.192	8.6
MG-W(2,1)-8L	Jacobi $\omega = 0.8$	79	17	1.6	0.192	8.7
MG-V(2,1)-9L	Jacobi $\omega=0.8$	596	17	8.4	0.193	30.7
MG-V(2,1)-9L	SOR	450	10	3.0	0.051	29.3
				0.0		

the 9L problem could not be solved by a direct solver

Anisotropic Poisson equation: $\varepsilon_x \frac{\partial^2 u}{\partial x^2} + \varepsilon_y \frac{\partial^2 u}{\partial y^2} = f(x, y)$ with $\varepsilon_x = 0.01, \varepsilon_y = 1.0$ "free triangular mesh": 8.786.945 (8L) d.o.f.

solver	smoother	total time	no. of	time per	$arrho_{comsol}$	v. mem.
		(<u>seconds</u>)	cycles	cycle		(GB)
MG-V(2,1)-8L	SOR	391	298	1.14	0.915	8.4
MG-F(2,1)-8L	SOR	502	297	1.51	0.915	8.4
MG-W(2,1)-8L	SOR	544	297	1.65	0.915	8.4
MG-V(2,1)-8L	SSOR	407	198	1.79	0.877	8.3
MG-V(2,1)-8L	Vanka	450	198	2.00	0.877	9.7
MG-V(2,1)-8L	SORline	441	68	5.08	0.692	10.3

Rotterdam, October 2013 9:21:19 PM wolfgang.joppich@h-brs.de

10

cooling of a thermos, heat transfer, laminar flow, free convection stationary, nonlinear

d.o.f.	solver	total time	v. mem.
	characteristics	(seconds)	(GByte)
1.975.146	MG-V(2,1)-6L SOR	50	7.4
	Pardiso	83	11.1
	MUMPS	157	9.9
	Spooles	254	8.6
5.084.465	MG-V(2,1)-7L SOR	128	8.3
	Pardiso	220	19.2
	MUMPS	410	14.8
	Spooles	857	20.6
20 323 281	MG-V(21)-81 SOR	695	25 5
	Pardiso	cancelled	
	MUMPS	cancelled	43.8
	Spooles	omitted	-

What has been observed?

- numerical complexity of the cycle is reflected well by the time per cycle
- convergence speed of F- and W-cycle are identical
 - F- and W- converge faster than V-cycle
- MG with V(2,1)-cycle usually is the fastest MG-solver (time to solve)
- steady convergence speed for all cycles (first to last)
- convergence speed is almost h-independent
- linear behavior is (almost) given
- moderate memory requirements, especially when compared to direct solver
- Jacobi smoother reacts on relaxation parameter as known from theory
- MG without coloured relaxation pattern or block relaxation behaves as predicted for the anisotropic Poisson equation
- MG beats all direct solver except for the anisotropic problem the direct solver could not solve the very large problems

MG implementation in COMSOL is reliable – use it

Literatur

Brandt, A., *Multigrid Techniques: 1984 Guide With Applications to Fluid Dynamics,* GMD-Studie No. 85, 1984 Hackbusch, W., *Multi-Grid Methods and Applications,* Springer, 1985

Wesseling, P., An Introduction to Multigrid Methods, John Wiley & Sons, Chichester, 1992

Trottenberg, U., Oosterlee, K., Schüller, A., *Multigrid,* Academic Press, 2001

Joppich, W., Grundlagen der Mehrgittermethode, Shaker 2011

 Barrett, R., et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994
Shewchuk, J. R., An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Carnegie Mellon University, 1994

Dahmen, W., Reusken, A., Numerik für Ingenieure und Naturwissenschaftler, Springer, 2008

