

Control the poly-dispersed droplet breakup mode inside a microfluidic flow-focusing device by external electric field

Presented by: Yuehao Li^{*} and Prof. K. Nandakumar EPIC (Enabling Process Innovation through Computation) Center Louisiana State University, Baton Rouge, LA, 70808

FP

Objective of this study:

- Capture the droplet breakup modes by level-Set method;
- Test the capability of using electric field to control the droplet breakup mode.

Introduction:

- (1) droplet-based microfluidics;
- (2) droplet generator; breakup regimes and breakup modes;
- (3) control the droplet breakup by electric fields

Numerical methods

- (1) Conservative level-set & Electrostatics;
- (2) Simulation setup

Results from simulations

Questions and Discussions

Introduction to droplet-based microfluidics

- The droplet-based microfluidics overcomes the drawbacks of the conventional single-phase microfluidics.
- **Approach**: introduce an immiscible carrier fluid (continuous phase) to encapsulate the reagents (secondary phase) inside discrete droplets / slugs.
- Advantages: Rapid mixing; no dispersion; minimized surface fouling.
- **Applications**:
 - (1) Nano-particle (NP) synthesis;
 - (2) In-situ kinetic measurement;
 - (3) Various other applications in chemistry and biology.
- **Challenges:**
- (1) Control the droplet breakup to obtain droplets of desired sizes and distributions.
- (2) Obtain "mono-dispersed" droplet sizes.

NPs of various shapes (Nie, 2005)

References:

- 1. H. Song, D. L. Chen, and R. F. Ismagilov, Angew. Chem.-Int. Edit. 45 (44), 7336 (2006).
- 2. J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Langmuir 19 (22), 9127 (2003).
- 3. Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, J. Am. Chem. Soc. 127 (22), 8058 (2005).
- S. Q. Xu, Z. H. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Angew. Chem.-Int. Edit. 44 (5), 724 (2005).

Droplet generations in microfluidics

- Passive droplet / slug generation:
- (1) Utilize device geometry and fluid flow;(2) Three types of generators:
- I. Co-flow device;
- II. Cross-flow device (T-junction);
- III. Hydrodynamic flow-focusing device.

• Droplet breakup dynamics:

- (1) Three forces:
- Pressure force, viscous shear and surface tension force;
- (2) Breakup regimes: **Squeezing, Dripping, Jetting**;
- (3) Critical parameters:

Capillary number ($Ca = \mu_c U_c / \sigma$) Flow ratio ($Q = Q_c / Q_d$) Viscosity ratio ($\lambda = \mu_d / \mu_c$)

References:

1. G. F. Christopher and S. L. Anna, J. Phys. D-Appl. Phys. 40 (19), R319 (2007).

2. M. De Menech, P. Garstecki, F. Jousse, and H. A. Stone, J. Fluid Mech. 595, 141 (2008).

Passive droplet generators (Christopher, 2007)

Droplet breakup regimes (De Menech, 2008)

Squeezing (*Ca* <0.01)

Dripping (0.01<*Ca* <0.04)

Droplet breakup modes

- Mono-dispersed breakup: uniform droplets, size variation < 2%;
- Poly-dispersed breakup: droplets of broad size distributions
- Typical poly-dispersed breakup modes:
- I. Single secondary (satellite) droplet after the primary droplet;
- II. Multiple secondary droplet after the primary droplet.

Poly-dispersed breakup mode seen in experiments (Anna, 2003)

Reference: S. L. Anna, N. Bontoux, and H. A. Stone, Applied Physics Letters 82 (3), 364 (2003).

A typical poly-dispersed breakup mode

Governing mechanisms of poly-dispersed breakup mode

• Conclusions from literatures and previous simulations:

I. Poly-dispersed breakup mode is governed by the **non-linear dynamics.**

II. **Initiation**: imbalance of the three forces;

III. Two mechanisms: end-pinching & capillary instability;IV. Comsol can capture these two modes and the wave shape.V. Capillary instability needs time to develop.

End-pinching & Capillary instabilities (Stone, 1989)

Y. C. Tan, V. Cristini and A. P. Lee, *Sens. Actuator B-Chem.*, 2006, **114**, 350-356.
H. A. Stone and L. G. Leal, *J. Fluid Mech.*, 1989, **198**, 399-427.

Apply electrical field to control droplet sizes (Link, 2006)

- Electric field has been coupled with conventional droplet-based ٠ microfluidics to enhance the droplet manipulations (breakup, coalescence, sorting and etc).
- The different electric properties (permittivity, conductivity) induce ۲ electric charges on the fluid interface.
- The interactions between electric field and the induced charges generate • electric forces (Maxwell stress) on the fluid interface.
- The electric force has shown the ability to control the droplet sizes. •

Hypothesis: The electric field can control the droplet breakup mode in droplet-based microfluidics.

Use electrical field to control the breakup of viscous droplets (Li, 2015)

Using external electric field to control the breakup of viscous droplets inside a microfluidic device

Reference:

- 1. D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. D. Cheng, G. Cristobal, M. Marquez and D. A. Weitz, Angew. Chem.-Int. Edit., 2006, 45, 2556-2560.
- 2. Y. Li, M. Jain, Y. Ma and K. Nandakumar, Soft Matter, 2015, DOI: 10.1039/C5SM00252D.

Numerical methods

Simulation setup

- Field configuration: high potential V_0 left, ground right.
- Strong field in the dispersed phase ($\varepsilon_2 < \varepsilon_1$).
- Electric force is induced on the fluid interface.
- Electric force "squeezes" the fluid neck.

	Continuous phase	Dispersed phase
Density (kg/m^3)	1000	960
Viscosity (mPa*s)	1	10/20/50/100
Relative	78.5	2.8
permittivity		
Qc/Qd	$10 \sim 100 (Qd = 0.04 mL/h)$	
V0	0 ~ 150 V	

10/08/2015

Presentation in Comsol Conference 2015

Effect of flow ratio on poly-dispersed breakup mode ("poly-dispersed breakup window")

Observations (Nie, 2008), without electric field:

- Poly-dispersed breakup mode occurs in certain ranges of flow ratios ("poly-dispersed breakup window").
- When the flow ratio increases beyond critical values, the poly-dispersed mode shifts to mono-dispersed mode.
- The locations and size of "windows" are functions of viscosity ratio ($\lambda = \mu_d / \mu_c$).
- The span of "window" is large when the viscosity ratio is small.

Reference: Z. Nie; Microfluid. Nanofluid., 2008, 5, 585-594.

10

10/08/2015

Presentation in Comsol Conference 2015

Simulation results: droplet breakup without electric field

Observations from simulations:

- The numerical model (LSM) can capture the "poly-dispersed breakup window" qualitatively.
- Good agreement of primary droplet sizes with experiments (Nie, 2008).

10/08/2015

Presentation in Comsol Conference 2015

12

Effect of flow ratio on breakup modes

Observations:

- Increase the flow ratio from 50 to $100 \rightarrow$ total droplet breakup time is reduced from 13 ms to ~ 8.5 ms.
- Reduce droplet breakup time \rightarrow suppress the development of capillary instability \rightarrow mono-dispersed breakup mode
- Hypothesis: apply electric field to speed up the breakup process thus to suppress the capillary instability.

Time (ms)

• The electric force squeezes the fluid neck thus reduces the droplet breakup time.

(d2)

t = 0.165 s

(c2)

t = 0.162 s

(b2)

t = 0.159 s

(a2) t = 0.000 s

- When $V_0 = 120$ V is applied, the total droplet breakup time is reduced from 13 ms to ~ 7 ms.
- As the capillary instability does not have sufficient time to develop, the poly-dispersed breakup mode is eliminated.

- The simulations using Comsol have captured the droplet breakup modes successfully.
- The poly-dispersed breakup mode occurs due to the effect of capillary instability.
- The capillary instability requires certain time to develop before it can take effect.
- By shortening the droplet breakup time, the capillary instability can be suppressed, which can avoid the poly-dispersed breakup mode.
- By applying the external electric field, the electric force is induced on the fluid interface. The electric force helps to reduces the droplet breakup time thus to avoid the poly-dispersed breakup mode.
- As the applied voltage exceeds certain threshold value, the droplet breakup mode shifts from the poly-dispersed to the mono-dispersed one.

Acknowledgement

EPIC at LSU

LSU Campus

Chemical Engineering Dept, LSU

Sincere thanks to

- My advisor and group members;
- HPC facility at LSU and LONI;
- Your attentions.

Questions?