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Introduction: 
(1) droplet-based microfluidics;
(2) droplet generator; breakup regimes and breakup modes;
(3) control the droplet breakup by electric fields

Numerical methods
(1) Conservative level-set & Electrostatics;
(2) Simulation setup

Results from simulations

Questions and Discussions
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Objective of this study:
• Capture the droplet breakup modes by level-Set method;
• Test the capability of using electric field to control the droplet breakup mode.



Introduction to droplet-based microfluidics

• The droplet-based microfluidics overcomes the drawbacks of 
the conventional single-phase microfluidics.
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(Song, 2006)

(Tice, 2003)

NPs of various shapes (Nie, 2005) core – shell structures (Xu, 2005)

• Approach: introduce an immiscible carrier fluid (continuous 
phase) to encapsulate the reagents (secondary phase) inside 
discrete droplets / slugs.

• Advantages: Rapid mixing; no dispersion; minimized 
surface fouling.

• Applications: 
(1) Nano-particle (NP) synthesis;
(2) In-situ kinetic measurement;
(3) Various other applications in chemistry and biology.

• Challenges: 
(1) Control the droplet breakup to obtain droplets of 

desired sizes and distributions.  
(2) Obtain “mono-dispersed” droplet sizes.



Droplet generations in microfluidics
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Co–flow device Cross – flow device
(T-junction)

Hydrodynamic 
flow–focusing 

device

Passive droplet generators (Christopher, 2007)• Passive droplet / slug generation:
(1) Utilize device geometry and fluid flow;
(2) Three types of generators:
I. Co-flow device;
II. Cross-flow device (T-junction);
III. Hydrodynamic flow-focusing device.

• Droplet breakup dynamics:
(1) Three forces: 
Pressure force, viscous shear and surface tension force;
(2) Breakup regimes: Squeezing, Dripping, Jetting;
(3) Critical parameters: 

Capillary number (Ca = ⁄𝜇𝜇𝑐𝑐𝑈𝑈𝑐𝑐 𝜎𝜎)
Flow ratio (Q = ⁄𝑄𝑄𝑐𝑐 𝑄𝑄𝑑𝑑)
Viscosity ratio (λ = ⁄𝜇𝜇𝑑𝑑 𝜇𝜇𝑐𝑐)

Squeezing (Ca <0.01) Dripping (0.01<Ca <0.04)

jetting (Ca > 0.04)

Droplet breakup regimes (De Menech, 2008)

References:
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Droplet breakup modes

• Mono-dispersed breakup: uniform droplets, size variation < 2%;
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• Poly-dispersed breakup: droplets of broad size distributions

Mono-dispersed breakup mode

A typical poly-dispersed breakup mode

Poly-dispersed breakup mode seen  in experiments 
(Anna, 2003)

Reference: S. L. Anna, N. Bontoux, and H. A. Stone,  Applied Physics Letters 82 (3), 364 (2003).

• Typical poly-dispersed breakup modes:
I. Single secondary (satellite) droplet after the primary droplet;
II. Multiple secondary droplet after the primary droplet.



Governing mechanisms of poly-dispersed breakup mode
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End-pinching & Capillary instabilities (Stone, 1989)

Ti
m

e

Stage 1:
End-pinching 

dominates

Stage 2:
End-pinching 

& Capillary instability
dominates

Reference:
1. Y. C. Tan, V. Cristini and A. P. Lee, Sens. Actuator B-Chem., 2006, 114, 350-356.
2. H. A. Stone and L. G. Leal, J. Fluid Mech., 1989, 198, 399-427.

• Conclusions from literatures and previous simulations:

Mono-dispersed: 
neck retract

W
ave shape 

in the neck

Poly-dispersed: 
neck does not retract

I. Poly-dispersed breakup mode is governed by the non-linear dynamics. 
II. Initiation: imbalance of the three forces;

III. Two mechanisms: end-pinching & capillary instability;

V. Capillary instability needs time to develop.
IV. Comsol can capture these two modes and the wave shape.



Apply external electric field to control droplet breakup 
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Apply electrical field to control droplet sizes (Link, 2006) Use electrical field to control the breakup of viscous droplets (Li, 2015)

Reference:
1. D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. D. Cheng, G. Cristobal, M. Marquez 

and D. A. Weitz, Angew. Chem.-Int. Edit., 2006, 45, 2556-2560.
2. Y. Li, M. Jain, Y. Ma and K. Nandakumar, Soft Matter, 2015, DOI: 10.1039/C5SM00252D.

• Electric field has been coupled with conventional droplet-based 
microfluidics to enhance the droplet manipulations (breakup, 
coalescence, sorting and etc) . 

• The different electric properties (permittivity, conductivity) induce 
electric charges on the fluid interface.

• The interactions between electric field and the induced charges generate 
electric forces (Maxwell stress) on the fluid interface.

• The electric force has shown the ability to control the droplet sizes.

Hypothesis: The electric field can control the droplet breakup 
mode in droplet-based microfluidics.



Numerical methods
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Fluid flow: Conservative Level-Set Method (LSM)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 � 𝛻𝛻𝛻𝛻 = 𝛾𝛾𝛻𝛻 � 𝜖𝜖𝛻𝛻𝛻𝛻 − 𝛻𝛻(1 − 𝛻𝛻) 𝛻𝛻𝜕𝜕
𝛻𝛻𝜕𝜕

(3)

�𝒏𝒏 = 𝛻𝛻𝜕𝜕
𝛻𝛻𝜕𝜕

(4)

𝜅𝜅 = − |𝛻𝛻 � �𝒏𝒏 𝜕𝜕=0.5 (5)
𝑭𝑭𝑠𝑠𝑠𝑠 = 𝜎𝜎𝜅𝜅𝜎𝜎�𝒏𝒏 (6)
𝜎𝜎 = 6 𝛻𝛻𝛻𝛻 𝛻𝛻(1 − 𝛻𝛻) (7)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 � 𝜌𝜌𝒖𝒖 = 0 (8)
𝜕𝜕 𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 � 𝜌𝜌𝒖𝒖𝒖𝒖 = −𝛻𝛻𝑝𝑝 + 𝛻𝛻 � 𝜇𝜇 𝛻𝛻𝒖𝒖 + 𝛻𝛻𝒖𝒖𝑇𝑇 + 𝑭𝑭𝑠𝑠𝑠𝑠 +
𝑭𝑭𝑒𝑒𝑠𝑠 (9)
𝜌𝜌 = 𝜌𝜌1 + 𝜌𝜌2 − 𝜌𝜌1 𝛻𝛻
𝜇𝜇 = 𝜇𝜇1 + 𝜇𝜇2 − 𝜇𝜇1 𝛻𝛻
𝜀𝜀 = 𝜀𝜀1 + 𝜀𝜀2 − 𝜀𝜀1 𝛻𝛻 (10)

𝑭𝑭𝑒𝑒𝑠𝑠 = 𝛻𝛻 � 𝑇𝑇𝑀𝑀𝑀𝑀 = −1
2
𝑬𝑬 � 𝑬𝑬 𝛻𝛻𝜀𝜀 (11)

𝛻𝛻 � −ε𝛻𝛻𝛻 = ρf (1)
𝑬𝑬 = −𝛻𝛻𝛻 (2)

Electrostatics: Poisson equation LSM Electrostatics
Location & shape of interface: 𝛻𝛻

Parameters: 𝜌𝜌, 𝜇𝜇, ε, �𝒏𝒏, 𝜅𝜅

Navier-Stokes equations

Electric potential V

Electric field 𝑬𝑬Interfacial tension force:  𝑭𝑭𝑠𝑠𝑠𝑠

𝜀𝜀

Electric force 𝑭𝑭𝑒𝑒𝑠𝑠
𝜌𝜌,
𝜇𝜇

Velocity u, pressure p

Next time step

𝑭𝑭𝑒𝑒𝑠𝑠
update



Simulation setup
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(a) (b)

Continuous phase Dispersed phase

Density (kg/m^3) 1000 960
Viscosity (mPa*s) 1 10/20/50/100

Relative 
permittivity 

78.5 2.8

Qc/Qd 10~100 (Qd = 0.04 mL/h)

V0 0 ~ 150 V
• Electric force “squeezes” the fluid neck. 

2D computational domain

• Field configuration: high potential V0 left, ground right.

• Electric force is induced on the fluid interface. 
• Strong field in the dispersed phase (ε2 < ε1). 
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Effect of flow ratio on poly-dispersed breakup mode
(“poly-dispersed breakup window”)

Observations (Nie, 2008), without electric field:
• Poly-dispersed breakup mode occurs in certain ranges of flow ratios (“poly-dispersed breakup window”). 
• When the flow ratio increases beyond critical values, the poly-dispersed mode shifts to mono-dispersed mode. 
• The locations and size of “windows” are functions of viscosity ratio (λ = ⁄𝜇𝜇𝑑𝑑 𝜇𝜇𝑐𝑐). 
• The span of “window” is large when the viscosity ratio is small. 

Reference: Z. Nie; Microfluid. Nanofluid., 2008, 5, 585-594.



Simulation results: droplet breakup without electric field
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Poly-dispersed breakup “window” Poly-dispersed breakup “window” Poly-dispersed breakup “window”

Observations from simulations:
• The numerical model (LSM) can capture the “poly-dispersed breakup window” qualitatively.
• Good agreement of primary droplet sizes with experiments (Nie, 2008).



Effect of flow ratio on breakup modes
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Observations: 
• Increase the flow ratio from 50 to 100  total droplet breakup time is reduced from 13 ms to ~ 8.5 ms.
• Reduce droplet breakup time  suppress the development of capillary instability  mono-dispersed breakup mode
• Hypothesis: apply electric field to speed up the breakup process thus to suppress the capillary instability.

Poly-dispersed breakup mode

Mono-dispersed breakup mode

Neck width (Wn) as a function of time

Increase the flow
 ratio

Measure the neck width 
in the orifice entrance 



Effect of electric field on breakup mode

10/08/2015 Presentation in Comsol Conference 2015 13

µd / µc =20, Qc/Qd =50, Qd = 0.04 mL/h

• The electric force squeezes the fluid neck thus reduces the droplet breakup time.
• When V0 = 120 V is applied, the total droplet breakup time is reduced from 13 ms to ~ 7 ms.
• As the capillary instability does not have sufficient time to develop, the poly-dispersed breakup mode is eliminated. 



Conclusions

• The simulations using Comsol have captured the droplet breakup modes successfully. 

• The poly-dispersed breakup mode occurs due to the effect of capillary instability.

• The capillary instability requires certain time to develop before it can take effect.

• By shortening the droplet breakup time, the capillary instability can be suppressed, which can avoid the poly-dispersed 
breakup mode.

• By applying the external electric field, the electric force is induced on the fluid interface. The electric force helps to 
reduces the droplet breakup time thus to avoid the poly-dispersed breakup mode.

• As the applied voltage exceeds certain threshold value, the droplet breakup mode shifts from the poly-dispersed to the 
mono-dispersed one. 
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