K. S. Gandhi¹, V. G. J. Rodgers¹ 1. University of California at Riverside, Bioengineering, Riverside, CA, USA

Introduction: The delivery of chemotherapy into the central nervous system remains a challenge. Here, I look at the environment of the blood brain barrier, in particular transport proteins. Then, I create a COMSOL model to describe and predict behavior at the blood-

Results: A computer-aided design (CAD) can be used to better study the concentration gradient. CAD can more accurately predict and describe the gradient, with respect to table-based data.

brain barrier (BBB) with respect to one pharmaceutical agent.

Figure 1. CNS Transport Schematic [3]

Computational Methods: I created a model of concentration of pharmaceutical across the BBB. I used experimentally determined partition coefficients (K_p) and diffusivity. I used K_p to create a linear model of flux across the membrane.

Figure 2. Wild type, t=0

Figure 3. Wild type, t=1

$$\label{eq:Kp} \begin{split} K_p &= C1 final/C2 final \\ Inward Flux to C1 &= Constant * (C1 - K_p * C2) ~(mol/m^2 * s) \end{split}$$

Below is a table of K_p values.

Variable	Erlotinib	Flavopiridol
Wild-type	1.00	1.00

Figure 4. Knock-out, t=0 **Figure 5**. Knock-out, t=1

Conclusions: COMSOL or CAD models can be used to study transport kinetics. They may more effectively communicate data. Also, they may be used to further interpret data.

Bcrp knockout	1.29	1.27	
P-gy knockout	2.95	3.49	
Double Knockout	8.52	14.2	

Table 1. K_p values for Erlotonib and Flavopiridol [1]

References:

- Kodaira H, et. al., Kinetic Analysis of the Cooperation of P-Glycoprotein and Breast Cancer Resistance Protein in Erlotinib, Flavopiridol, and Mitoxantrone, The Journal of Pharmacology and Experimental Therapeutics, Vol. 333, 788-796 (2010)
- Adachi Y, et. al., Comparative Studies on in Vitro Methods for Evaluating in Vivo Function of MDR1 P-Glycoprotein, Pharmaceutical Research, Vol. 18, 1660-1668 (2001)
- Pardrige, W, Drug Transport Across the Blood-Brain Barrier, Journal of Cerebral Blood Flow & Metabolism, Vol. 23, 1959-1972 (2012)

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston