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A Heat Transfer Model for Ugitech’s Continuous Casting Machine

• Ugitech:
– Member of the S+B Group
– Dedicated to Stainless Steels Long Products

• The Continuous Casting Machine:
– Technological features
– Problems to be solved

• Numerical Simulation:
– The heat transfer model
– Some results / comparisons with measurements
– Recent developments : mechanical model

• Conclusion:
– Work in constant progress
– Generalization of numerical simulation
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Ugitech S.A
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UGITECH, a main industrial stainless steel long 
products actor based on a  famous legacy
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Pechiney Group to form
Ugine Aciers
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Merger of Usinor and Sacilor.
Ugine Aciers is renamed 
Ugine-Savoie

19911991

New dust cleaning
Machine in Ugine



Dedicated to stainless steels long products
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The Continuous Casting Machine:

• Technological features:
– A 3-strand fully vertical machine
– Bloom 205² mm with ∅40 mm rounded corners
– Casting of stainless steels (any grade)
– Casting speed around 1 m/min
– Lubrication with mineral mould flux
– Metallurgical length: 14 m

• Phenomena
– Casting of superheated liquid steel: +40°C (≅1400°C)
– First solidification within the mould, through a thin layer of 

infiltrated molten mould flux
– Passing through several water cooling nozzles
– End of solidification through radiation mainly

The blooms are torch-cut after 14 m, in lengths about 3,4 m. 
This constitutes a maximum limit we cannot exceed as far 
as the end of solidification is concerned.
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Water cooled mould: 
length 800 mm

Flat nozzle cooling

Round nozzle 
cooling

Holding rolls

Round nozzle 
cooling

Natural cooling

Liquid well

Liquid metal



Problems to be solved
• Physical phenomena

– Turbulent fluid flow before solidification
– Heat transfer, with or without convection
– Mechanical stresses and strains after solidification

As a matter of fact, all these phenomena are tightly coupled and
extremely non-linear. Solidification and mechanical contacts 
(mould/rollers) are a modelling difficulty.

• Model simplifications
– The fluid flow is calculated separately to check the vertical extend 

of the radial convection. Only a local increase in the heat 
conductivity brings the convection influence in the model

• Only the upper part of the mould content is affected by convection

– All the heat exchanges are in the horizontal plane
• This is not true in the upper part... But we verify that the overall heat 

extracted through the mould is correct, compared with measurements

– All the stresses and strains are in the horizontal plane
• Fairly correct if one considers that things change slowly along the z

axis.
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The heat transfer model (1)
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• A 2D model : geometry and meshing
– Considering the geometry of the problem, the heat is supposed to

flow within the section of the bloom
– We neglect the 3D aspects…

• True along the length of the product
• To be corrected near the top meniscus

– The symmetries are used whenever possible
• Only one eighth of the section is meshed
• Whenever required, we can use a full section mesh

Metal domain, with a fine regular 
mesh, to keep track of the 

solidification front from 100% 
liquid to 100µ solid



The heat transfer model (2)
• Domain settings

– The solidifying stainless steels undergo different phase changes, often involving more than one 
solid phase (δ and α ferrite, γ austenite)

– The solidification interval is modelled using equilibrium thermo-dynamic calculation. A solid 
fraction is used to calculate the thermo-physical data as a composite between liquid, and solid.

– For the time being, the local solidification time is not taken into account
... but it’s part of our projects... Or thermo-chemistry software allows for it.

– The curves are fed in Comsol Multiphysics either as:
• Direct scalar expressions
• Formal derivative against T
• Tables
• or a mixture of all
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Adimensional solid fraction as a function 
of the adimensional temperature

T°C liquidus

T°C solidus

δ → γ

γ → α

T_liq 1456.06[degC] Liquidus temperature
T_sol 1407.76[degC] Solidus temperature
DelT T_liq-T_sol Solidification range
Tadim (T-T_sol)/DelT Adimensional temperature
cp_Sc 3197.685121[J/(kg*K)] Solid heat capacity (order 0)
cp_Lc 107.528668[J/(kg*K)] Liquid heat capacity(order 0)
cp_Sp -4.055691[J/(kg*K^2)] Solid heat capacity (order 1)
cp_Lp 0.389271[J/(kg*K^2)] Liquid heat capacity (order 1)
cp_Sp2 0.00161067[J/(kg*K^3)] Solid heat capacity (order 2)
rho_Sc 8089.208219[kg/(m^3)] Solid density (order 0)
rho_Lc 8086.213364[kg/(m^3)] Liquid density (order 0)
rho_Sp -0.493564[kg/(K*m^3)] Solid density (order 1)
rho_Lp -0.607005[kg/(K*m^3)] Liquid density (order 1)



• Some thermo-physical data
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The heat transfer model (3)
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The heat transfer model (4)
• Boundary conditions

– Depending on time
• Since the simulation is 2D, the bloom section is translated within the 

machine, at the casting speed… The boundary conditions vary in time, 
to rebuilt the history of the section.

– Four kinds
• Conduction in contact with the upper copper mould

– A simple extracted flux equation depending on the z/t axis
• Radiation along the free length

– A temperature dependant equation

• Volumic heat flux
– Flux generated by an electromagnetic stirring device
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The heat transfer model (5)
• Convection:

– The capacity of Comsol to handle large equations allows us to describe each cooling 
nozzle independently. The (huge) equation used, gives the value of the heat transfer 
coefficient as a function of x (horizontal coordinate on the bloom surface), z/t (vertical 
position), the water flow rate, and the geometrical characteristics of the nozzle. Each 
nozzle has its own equation...
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hLocal=1570*(((((((((x+(Nspray-1)/2*dSpray)/(Dist.*tan(AngH*pi/360))).^2+(t/(Dist.*tan(AngV*pi/360)))^2)<=1)).*(cos(atan
(sqrt(((x-(-(Nspray-1)/2)*dSpray).^2)+t^2)/Dist)))+(Nspray==2)*((((((x-(1-(Nspray-1)/2)*dSpray)/(Dist.*tan(AngH*pi/360))
).^2+(t/(Dist.*tan(AngV*pi/360)))^2)<=1)).*(cos(atan(sqrt(((x-((Nspray-1)/2)*dSpray).^2)+t^2)/Dist)))))/(2*pi*(Dist^2)*N
spray*(Dist.*tan(AngV*pi/360))/(Dist.*tan(AngH*pi/360))*(sin(AngH*pi/360)*tan(AngH*pi/360)+(cos(AngH*pi/360)-1)))*Qeau*N
spray*0.06))/3.6).^0.55*(1-0.0075*(Teau-273.15))/4

Round nozzle Paired round nozzles Flat nozzle

Values of h -- convection coefficient -- as a function of x and z



Some results … (1)
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Mould

Natural cooling

Nozzle mark

Roller mark

Temperature profile in an 8th of a bloom section Heat flux profile in an 8th of a bloom section

Solidification
front

Section displayedGrade 304L
Casting speed 1,12m/min

Ring

The calculation time is about 1000s



Some results … (2)
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Mould

Natural cooling

Nozzle mark

Roller mark

Liquid & Solid fractions

Section displayed
Grade 304L

Casting speed 1,12m/min

Ring

Solid Shell

Liquid Well

Water cooled mould

15,5mm



Some results … (3)
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Temperatures along the strand at the corner, at mid-face and at this axis

• The length of the liquid well (end of solidification at the axis) can be calculated: any 
torch cutting on the liquid is avoided. 

• The surface defects are also correlated with the temperature gradient and evolution

Mould

Secondary 
cooling

Electromagnetic 
stirring

End of 
solidification

Liquidus

Solidus

Metallurgical length [m]

Torch cutting

304L
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• Pyrometric measures have been taken along the CC strand and fall within ± 10°C from the forecast. The surface 
temperature is well calculated
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• An incidental torch cutting displaying a liquid metal drop, confronted with the casting conditions shows that the liquid 
well position is also correct.

Calculated liquid 
well closure = 

14,6m

Torch cutter 
position at bloom 

axis = 14,7m

Axis temperature

Face temperature



Recent developments : thermo-mechanical model (1)
• The most difficult part of the model resides in the 

mould, where one creates the solid phase, and where 
all the phenomena occur:

– Fluid flow (which changes the heat fluxes locally)
– Phase change which induces volume changes
– Variable, non-linear surface contact between mould and 

metal

• Most of the defects are coming from this early 
solidification

– Cracks
– Segregations near the product’s skin
– Depressions
– Oscillations marks

• If not to give an exact forecast, at least does a model 
assist the researcher in understanding the process
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Heat transfer mesh (metal)

Heat transfer mesh (mould)

Convection (water)

Mechanical mesh (plane strain)

Contact with the mould

Ferrostatic pressure

Thermo-mechanical model (2)

• Two dialoging meshes:
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Extrusion variables

Contact condition

Tcu.extTeau Tcu.int

Reau = 1/heau Rcu = ecu/λcu R1 = es/λlaitier.solide

Tbreak TsurfTlaitier

R2 = el/λlaitier.liquide

Rair = eair/λair
c

Rair = σ.εlaitier.εmétal.(Tlaitier+3.Tlaitier.Tsurf+3.Tlaitier.Tsurf+Tsurf)
r 3 2 2 3

Défo
rm

ati
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Thermo-mechanical model (3)

• Material:
– Elasto-plastic material, with a perfect plastic behaviour in the solid phase

• This is a theme for our current work... A visco-plastic behaviour would be better...
– Purely elastic behaviour, with a very low Young modulus in the liquid phase

• This does not modify the results since the Yong modulus chosen is several orders of 
magnitude lower than in the solid phase

• This assumption avoids strain accumulation in the liquid, while transmitting correctly the 
pressure at the solidification front

• Boundary conditions
– Symmetries (conventional BC)
– Convection coefficient at the external boundary of the mould.
– Ferrostatic pressure at the inner boundary of the mechanical mesh
– Thermal resistance between mould and metal

• Taking into account the mould flux properties and thickness
• Taking into account the eventual air gap deduced from the deformations of the surface

– Contact condition at the surface of the metal
• Hand built to accommodate the transient calculation
• Based on a smoothed reaction force proportional to the ferrostatic pressure
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Heat FluxAir Gap

Thermo-mechanical model (4)
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Mould

Meniscus

First solid

Air gaps

Temperature

1525°C

1050°C

1220°C

1400kW/m2

900kW/m
2

400kW/m21.4mm



Thermo-mechanical model (5)
• Results:

• These results are qualitative for the time 
being. The big difficulty of convergence and 
numerical stability has been overcome and 
work is still in progress regarding the 
constitutive laws of the near melting solid

• The calculation time is about 5 hours

November 6th 2008 Comsol Conference Hannover 2008 23

Heat fluxes along the length of the mould

Section of the product at the mould exit

Solidification front
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Conclusion (1)
• Using our current thermodynamical knowledge, and Comsol:

– We can calculate the heat transfer of any heat’s solidification
– Our heat transfer model is accurate enough to track the liquid well

• It has been checked against real data on two grade families
– We have first results regarding the interfacial heat transfers in the mould

• Constant progress on three battle fronts:
– Apply the use of the model to more and more case studies

• Casting speed limits,
• Format changes
• Asymmetry
• New grade families

– Feed the model(s) with accurate data (thermo-physical data acquisition)
• Increase our current databases further than 304, 326, 420, etc.
• Measure ρ, Cp, λ, solidification enthalpy for new grades
• Improve the nozzles description

– Improve the model itself 
• constitutive laws for near melting steels
• 3D ??
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Conclusion (2)
• Considering the success of this model, we are extending our numerical 

simulation effort to other fields:

– Ladle simulation (2D-axi heat transfer, 3D-CFD)

– Localised stresses on a machined part  (3D elastic)

– ESR heating (3D AC-DC + heat transfer)

– Bloom cooling after CC (3D heat transfer)

– Tundish simulation (3D k-ε CFD)
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