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A b s t r a c t :  The mixing of liquids was
characterized in thirteen different microfluidic
devices. The goal was to characterize in a
uniform manner the flow and mixing that
occurred in slow, laminar flow and to present the
results that allow quick designs.  The mixing of a
dilute chemical in another liquid during slow,
laminar flow is a particularly difficult task, but
the results showed that for Reynolds number of
1.0 (appropriate to microfluidics) the amount of
mixing depended mainly on the flow length
divided by the Peclet number, for all geometries.
Two-dimensional simulations frequently gave a
good approximation of the three-dimensional
simulations, and the optical variance (as
measured by fluorescence) is not too different
from the flow variance (sometimes called the
mixing cup variance). All simulations were done
using Comsol Multiphysics using the Navier-
Stokes equation and the convective diffusion
equation.
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1. Introduction

When designing a microfluidic device, it is
important to be able to mix chemicals quickly
and easily.  One method is to have active mixing,
such as with a stirrer.  The other alternative it
passive mixing, in which the mixing takes place
because of the fluid flow induced by the
microfluidic device.  We concentrate on the
latter.  One type of passive mixers is a ‘split and
recombine’ mixer, in which streams of different
concentrations are brought into contact so that
diffusion can take place between them, and then
they are separated and brought together in a
different way to speed up the process.  Another
type is a chaotic mixer in which the fluid is
divided into lamellae that are woven together.
Both types are reviewed in the literature [1, 7,
13, 15].  Here we characterize thirteen different
passive mixers.  The most successful of those
include the herringbone mixer [16, 19] and
serpentine mixer [2, 12].  The herringbone mixer
has been characterized extensively and is not

considered here except to note that the mixing
depends chiefly on z '/ Pe  [19], which is the
same conclusion for the mixers treated below.

The study is focused on situations with
passive mixers (i.e. no mechanical mixing) at
low Reynolds numbers.  For a few of the
geometries, inertial effects (at higher Reynolds
numbers) are explored.  Special geometries are
necessary for this to be effective.  Questions
addressed for each geometry are:
A. Do the variances collapse onto one curve if
properly presented?
B. Do the results follow the same curve of
variance vs. z '/ Pe as for a T-sensor?
C. How different are the mixing cup and optical
variances?  Is this difference important?
D. How do 2D and 3D results compare?
E. What is needed for each device to reach a
variance of 0.01?  0.001?
F.  What is the effect of Reynolds number?
(This is pertinent only to a few of the
geometries.)
G. What is the trade-off of decreasing variance
and increasing pressure drop?

2. Use of COMSOL Multiphysics

The equations are solved in non-dimensional
form.  The 2D and 3D Navier-Stokes equation
and convective diffusion equation (CD) are:

u •∇u = −∇p '+ 1
Re

∇2u ,

u •∇c = 1
Pe

∇2u

Re =
ρusxs
η

, Pe = usxs
D
, Sc = ν

D
, Pe = ReSc

The choices of characteristic velocity, us, and
characteristic distance, xs, are specified below for
each geometry.  Generally they are an average
velocity and a diameter or thickness,
respectively. Boundary conditions for flow are
no slip on the solid walls, specified velocity
profile on the inlet boundary, and assigned
pressure on the outlet boundary.   The boundary
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conditions for the CD equation are zero flux on
solid walls and convective flux on the outlet
boundary.  If there is a single entry port, the
concentration is zero in one half and 1.0 in the
other half.  If there are two entry ports in the
geometry, the concentration is zero in one and
1.0 in the other; thus, the average concentration
in each device is 0.5.  The Peclet number was
varied from 10 to 1000.  All simulations were
done in Comsol Multiphysics, v. 3.4. by first
solving the Navier-Stokes equations and then
solving the CD equation for Peclet numbers from
10 to 1000.  The size of the problem varied with
geometry: 30,000 to 60,000 elements giving
150,000 to 300,000 degrees of freedom for the
Navier-Stokes equation and 75,000 to 150,000
degrees of freedom for the CD equation.

The variance at the exit was calculated using

σmixingcup
2 = [c − 0.5]2u • dA

A
∫ / u • dA

A
∫

If the velocity variable is left out of the above
formulas, one gets the variance that one would
measure with optical fluorescence integrated
through the device.

The pressure drop is computed from the total
pressure drop in the simulations, Δp ' .

Δp(Pa) = ρus
2Δp '

For comparison purposes, we use water as the
carrier fluid, so that ρ  = 1000 kg/m3 and η
=0.001 Pa s.   The base case velocity is taken as
0.005 m s-1 and the characteristic dimension was
taken as 200 µ.  This gives a Reynolds number
of 1.0. When Pe = 1000, the diffusivity is

D =
xsus
1000

= 10−9m2

This is a reasonable value for typical organic
chemicals, but biological molecules usually have
smaller values, perhaps by a factor of 10-100.
However, this was as low as we could go given
the computer equipment available.  Going to
higher Peclet numbers requires a much finer
mesh, which necessitates more memory that was
available.  However, as we see below, it is
possible to predict the mixing for higher Peclet

numbers based on calculations in shorter devices
with lower Peclet numbers.  This was tested, at
least, within the range of 10 ≤ Pe ≤ 1000.

3. Analytical Theory

The significance of different levels of
variance is demonstrated in Figure 1 by
calculating the variance for different
concentration distributions in a T-sensor [8],
which is illustrated in Figure 2.  Flow comes in
the two ports on the left and exits on the right.
Diffusion occurs across the mid-plane in the
device.

Figure 1. Concentration profiles leading to different
variances.  Average concentration 0.5; velocity profile

is parabolic.

In work published previously [6] the T-
sensor is characterized as shown in Figure 3.
Note that the variance roughly follows one
curve, regardless of the Peclet number, provided
the results are plotted versus z '/ Pe .  This is
expected because the flow is basically straight
down the device, except for the short entrance
region, with diffusion sideways, and there is no
convection sideways.   Thus, diffusion controls
the mixing, and the time in the device determines
how far the material can diffuse.  The parameter

z '
Pe

=
z
xs

D
usxs

=
z / us
xs
2 / D

=
t flow
tdiffusion

thus is a ratio of the characteristic time for flow
in the axial direction to the time for diffusion in



Figure 2. T-sensor; lines are streamlines, color is
concentration (red = 1, blue = 0)

Figure 3. Variance of T-sensor for Re = 1; [6, using
different definitions than the other figures]

the transverse direction.  Alternatively, one can
examine the convective diffusion equation when
there is no transverse velocity

w(x, y) ∂c
∂z

= D
∂2c
∂x2

+
∂2c
∂y2

+
∂2c
∂z2

⎡

⎣
⎢

⎤

⎦
⎥

and argue that axial diffusion term,

D∂2c / ∂z2 , can be neglected compared with

the axial convection term, w∂c / ∂z , since their

ratio is proportional to 1/Pe.
To further validate this concept in 3D, Figure

4a shows a geometry with two pipes joining, and
Figure 4b shows the variance as a function of
z '/ Pe ; data for the T-sensor and the two pipes
joining essentially superimpose on each other.

An approximation to the variance can be
derived analytically using the Method of
Weighted Residuals [5] for the case of a uniform
velocity. (See the Appendix).

σ 2 =
0.25 1−1.476 2z '/ Pe( ), z '/ Pe ≤ 0.05
0.220exp(−10z '/ Pe), z '/ Pe > 0.05

⎧
⎨
⎪

⎩⎪

Figure 4a. Two pipes joining
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Figure 4b. Variance of mixing with two pipes joining
(3D)and a 2D T-sensor, variety of Re, Pe, and

dimensions; using different definitions than in other
figures.

In this formula, the characteristic distance is the
total width of the T-sensor and the velocity is the
inlet average velocity.  It is plotted below on the
composite graphs.  For comparison, a finite
difference solution was used.  For a flat velocity
profile, the approximate solution  and finite
difference solution for 20 and 40 points
superimpose in Figure 5.  When the velocity
profile is quadratic (for fully developed flow
between two flat plates) the variance is slightly
smaller.

Figure 5. Variance for T-sensor
o – finite difference results and approximate solution,
flat velocity profile; triangle – finite difference results

with quadratic velocity profile



Figure 6. Variance for devices like the T-sensor

Figure 7a. Serpentine Mixer

Figure 7b. Variances for serpentine mixer

4. Results

In addition to the T-sensor and two pipes
joining, a variety of devices were examined.  The
devices are listed in Table 1 and typical
concentration profiles are illustrated in the
figures below.  First consider the devices that are
modest extensions of the T-sensor, with roughly
parallel flow.  They include sandwich device [9],
a planar spiral [17], a rectangular expansion in a
spiral [18], a rough channel [11], flow past
pillars, and crossed channels [14].  Figure 6

Figure 8. Variance for inertial devices

shows the variance for these devices, with a
picture illustrating the shape.

Another example of mixing is for the
serpentine mixer [2, 6, 12].  Figure 7a shows a
typical concentration profile.  In this case,
enhanced mixing occurs due to the flow
irregularities, even for a Reynolds number of 1.0.
As shown elsewhere [6] the serpentine mixer can
be several hundred times shorter to achieve the
same mixing as in a T-sensor.  The progress of
the mixing is shown step by step in Figure 7b.
Now the curves do not superimpose, but the
general shape of them is similar.

Some devices have been proposed that use
fluid flow that occurs mainly at higher Reynolds
number than used here to create vortices.  These
include mixing chambers [4], tesla mixers [10],
and tear drop mixers [3].  The Reynolds number
must be significantly higher, though.  The
variance for those devices for Re = 1 are shown
in Figure 8.

While not shown here, other results [20]
show that the optical variance is almost the same
as the mixing cup variance, on the scale of the
log-log graphs.   In addition, if a 3D object is
made simply by extruding a 2D pattern in the
third direction, the variance follows roughly the
same curve.  Another feature that is relevant is
the pressure drop needed to achieve the flow.
Since the Reynolds number is small (1.0) the
pressure drop is directly proportional to velocity;
the pressure drops are shown in Table 1 for the
standard conditions (water at 0.005 m/s).   If the
length is increased, to decrease the variance, the
variance fall much more quickly than the
pressure drop increases;  thus, a relative
advantage is gained by lengthening the device.



5. Conclusion

The variance for each geometry, for Re = 1,
fell on one curve as a function of z '/ Pe .  After
an entry region, the variance decreased
exponentially.  The curve was similar in all
cases, but shifted a bit for each device, and the
approximate solution for a T-sensor gives an
upper bound for the variance.  The optical
variances differed from the mixing cup variance
insignificantly on a logarithmic scale.
Oftentimes the 2D simulations give a good
representation of the 3D simulations; the case
when this doesn’t hold is when the flow is
particularly 3D in nature. With these ‘universal
curves’, it is possible to design a device to
achieve a predetermined mixing level without
doing numerical simulations, or at least doing the
numerical simulations only for the best designs.
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10. Appendix

An approximate solution for diffusion in the
T-sensor is developed using the Method of
Weighted Residuals, as described by Finlayson
[5, pp. 179-180, 190].  Notice that in Figure 1 the
concentration at the midpoint remains at c = 0.5.
On the right of the mid-point, the concentration
is initially zero, then a diffusion zone moves
from the midpoint to the edge, and then the
concentration increases.  Thus, we pose the
following problem to represent this case.  Only
the case of uniform velocity is done.

The diffusion equation is solved on x = 0 to h
(from the midpoint to the edge; thus h is the half-
thickness).

uavg
∂c
∂z

= D
∂2c
∂x2

With boundary conditions of c = 0.5 at x = 0 and
zero flux at x = h, and initial conditions of c = 0,
the problem is fully specified.  It is made non-
dimensional using the variables

∂c
∂z"

=
∂2c
∂x '2

, z" = zD
uavgh

2 , x ' =
x
h

c(0, z") = 0.5, c(x ',0) = 0, ∂c / ∂x '(1, z") = 0

For the first part of the time, the concentration is
zero almost everywhere with a concentration
increase at x = 0 to c = 0.5.  Then a thin diffusion
layer grows out towards the far wall.  During this
time, the approximations solution is taken as

c =
0.5 * (1− aη)2 ,η < 1 / a
0,η ≥ 1 / a

⎧
⎨
⎩

, η =
x '
4z"

This function is substituted into the differential
equation to form the residual.  In the Galerkin
method the residual is made orthogonal to the
trial function, which in this case is the derivative
of the function with respect to the unknown
parameter, a.  This is the same procedure that is
used in the Galerkin finite element method,
except that the trial function and weighting
function are not finite elements here.  Solving for
a gives a2 = 2/5.   This solution holds until the
diffusion front meets the wall, which
is z" ≤ 0.1 .   Calculating the variance gives

σ 2 = 0.25 1−1.476 z"( ), z" ≤ 0.1
At z" = 0.1  the variance is 0.133.  After this
time another form of the solution is used.

c = 0.5 + d(z")(x '2− 2x ')

The initial condition is d(0.1) = 0.5 to make the
start of this solution agree with the end of the
previous one.  Substituting this formula into the
differential equation forms the residual.  In the
Galerkin method this time the weighting function
is

(x '2− 2x ')

 and the solution for d is



d(z") = 0.642exp(−2.5z")

The variance is

σ 2 = 0.220exp(−5z"), z" > 0.1

In these formulas the distance is the half-
thickness and the velocity is the velocity out.  In
the figures shown above the total thickness is
used and the velocity is the average velocity in,
which is half as big.  Thus, the formula for z" is
multiplied by 22 and divided by 2, giving the
variance as shown in the Results section.

Table 1: Characteristics of Mixing Devices

name pathlength xs delta-p (Pa)
Sandwich1 3 side of square 208

planar spiral1 104/278 width 88

rectangular
expansion2 88 width of narrow section 6.3

rough channel3 20 thickness 10
pillars3 1.5 width 58

crossed channels1 5 width 8
2 pipes joining1 diameter 10

T-sensor1 5 width 3.7
 

mixing chamber3 34.7 width 14
tesla mixer1 10.3 width of inlet 62
tear drop3 7.62 width of inlet 117

serpentine3 5.9/9.8/13.1/21 thickness 291

1. us is the average velocity in one inlet
2. u s is the average velocity in the narrow section
3. u s is  one-half the average velocity out


