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Abstract: Excilamps are artificial Ultraviolet 
sources based on the emission of excimers or 
exciplexes. These latter are excited states of 
weakly bound rare gas or halide/rare gas atoms 
which emit a photon in the UV region when they 
dissociate. Dielectric Barrier Discharge (DBD) 
excilamps are promizing UV sources for the 
future, provided the coupling between their 
power supply is optimized. The model presented 
here describes the space and time evolution of a 
1D DBD supplied with various waveforms. 
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1. Introduction 
 

Artificial Ultraviolet (UV) sources are widely 
used in industrial applications as well as in 
lighting and medical technology. Usual UV 
sources are based on electrical discharges in a 
gas mixture containing mercury. Depending on 
the gas pressure, the efficiency of such sources 
can be high, around 60% of conversion of 
electrical power to UV flux, but with a low 
power density. However, a high power density 
can be achieved but with a drastic decrease in 
efficiency as a reverse effect. As mercury is a 
harmful element for health and environment, 
many efforts are carried out to get rid of it. As a 
result, researches are nowadays led in order to 
produce powerful, efficient and mercury free UV 
sources. In this field, Dielectric Barrier 
Discharges (DBD) in rare gas or halide/rare gas 
mixtures are promising. These discharges are 
usually made of a silica glass chamber, including 
the gas or gas mixture at a pressure between 
104Pa and 105Pa, with outer electrodes. 
Depending on authors, efficiencies between 40% 
and 60% have been reported for pure Xenon 
DBD lamps. Xenon/Chlorine excilamp are used 
in skin treatment: such gas mixture has a very 
interesting specificity as it emits almost 
exclusively in the UVB range (280nm-315nm). 
This radiation affects the immune system and 
has an especially high efficiency for curing 

affections due to the overactivity of this system, 
such as psoriasis and vitiligo. 

One of the key issues for the large 
application of these excilamps is the coupling 
between these sources and their power supply. 

We have developed a Partial Differential 
Equation model of a plane excilamp (the 
geometry is presented on figure 2, in pure 
Xenon, which is implemented in COMSOL. 
Depending on the boundary conditions applied, 
the model can be supplied by various voltage or 
current waveforms, and the densities of the gas 
discharge species are computed according to 
space and time. As a result, different power 
supply modes can be tested on this model and 
their efficiencies are computed as the ratio of the 
mean UV output power on the mean input 
electrical power. 
 
2. Theory 
 

DBD are typically "out of equilibrium" 
discharges, which means that thermodynamic 
equilibrium laws do not apply, even locally. 
Electrons and heavy particles (ions, at 
fundamental state or excited atoms, molecules) 
have drastically different temperatures, the order 
of magnitude is respectively 10000K and 
300/400K, and consequently their general 
behavior can only be described by Boltzmann's 
equation. This equation can be found in many 
thermodynamic books but the reference [1] can 
be mentioned as an example focused on plasmas. 

The general expression for Boltzmann's 
equation is, in the phase space and for a group of 
particles named s: 
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with: 

sf : distribution function of the specie s. It 

depends on the position rr  , the speed vr  and the 
time t. 

extF
r

: outside force applied on particles s. 

sm : mass of a particle s. 

Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover
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: nabla operator in the positions space. 
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: nabla operator in the velocity space. 
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The distribution function sf  of a specie s is 

such that vdrdfs
rr 33  corresponds to the number 

of particles of type s at time t around the position 
( )vr rr,  in phase space. The Boltzmann equation 
governs the evolution of that distribution 
function when the specie s is submitted to an 
outside force extF

r
 and to collisions. These 

collisions are included through the term 
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 which corresponds to the variations 

of the distribution function caused by elastic or 
inelastic collisions. It takes into account the 
number of particles of type s per time unit which 
are created or which disappear in the elementary 
volume around the position ( )vr rr,  or which are 
exchanged with the rest of the phase space. 

This collision term is generally written as an 
integration of the product of the distribution 
functions of the particles involved in the 
collisions and the corresponding collision cross 
sections. In that way, the Boltzmann equation is 
called integro-differential. 

As a result, the evolution of the discharge 
plasma can be described by a system of 
Boltzmann equations (as many equations as 
considered species) but the integro-differential 
characteristic of the equations, their strong 
couplings and nonlinearities, involve that the 
system is generally not directly solved. 
Numerical algorithms usually apply on a system 
which includes integral expressions for each 
Boltzmann equation, called the moments of the 
Boltzmann equation. 

The three first moments of Boltzmann's 
equations correspond, respectively, to the mass 
conservation, momentum conservation, energy 
conservation. These equations applied to a 
discharge plasma usually mention a number of 
terms, corresponding to the numerous exchanges 
which take place in the discharge. However, 
some approximations corresponding to the 
specific type of plasma which develops in a 

DBD lead to a simplification of the moments of 
Boltzmann's equation. 
 
2.1 Drift-Diffusion Model 
 

The gas pressure in which the discharge is 
established is, in the case of DBDs for UV 
production, between 103 and 105Pa, which makes 
that plasma strongly collisional. In those 
conditions, the directed energy of the particles 
can be neglected compared to their random 
motion energy (thermal energy). This collisional 
behavior causes the temporal variations of the 
studied variables (densities, fluxes, 
temperatures...) to be much weaker than the 
momentum exchange frequency by collision. 
This leads to strong simplifications of the 
momentum conservation equation. With 
additional approximations (scalar pressure, 
etc...), the flux of particles s can be written: 
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with: 

sq : elementary charge of the specie s. 

sn : density of the specie s. It depends on the 

position rr  and the time t. 

sµ : mobility of the specie s. 

sD : diffusion coefficient of the specie s. 

E
r

: electric field 
Two terms in the expression of the particle 

flux can be distinguished: one, related to the 
electric field, corresponds to the drift motion of 
the particles (provided they have a charge) and 
the other corresponds to the diffusion motion 
which is a collisional effect which tends to 
uniformize the density. Including the expression 
of that flux in the mass conservation equation 
leads to the following drift-diffusion equation: 
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with: 
V : electrostatic potential. 

sS : source term for the specie s. 
Despite the previous simplifications, the 

system made of the coupling of the equation (3) 
written for every considered species in the 
plasma is still not closed. Indeed, some variables 
are still undefined. 



In order to get rid of the indetermination of 
the electric field, Poisson's equation can be 
coupled to the system but a further 
approximation is needed to get the transport 
coefficients sµ  and sD . 
 
2.2 The local field approximation 
 

The energy gained by electrons in the electric 
field during an infinitesimal lapse of time is 
assumed exactly balanced by their collision 
energy losses. This is valid for a plasma in which 
the electrons have a collision frequency high 
enough to be in equilibrium with the electric 
field. In that case, their distribution function only 

depends on the local electric field N
E
r

 (where 

N is the density of the gas atoms). Consequently, 
the collision frequencies (and the source terms), 
the mobilities and the diffusion coefficients 
depend as well exclusively on the local field. 
 
3. Governing equations 
 

Considering the previous approximations, the 
plasma is governed by the following closed 
equation system: 
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This system contains a Poisson's equation 
coupled to as many equations as considered 
species. The subscripts e and i refer respectively 
to the electrons and to the ions. 

After all those approximations, the studied 
plasma is governed by a coupled Partial 
Differential Equations (PDE) system which can 
be numerically solved on a spatial domain Ω  
limited by a surface Ω∂  provided: 

- the values of the transport coefficients 
(mobilities, diffusion coefficients) and the source 
terms are known as a function of the local 

electric field. The literature provides some 
information about this aspect,  

- the boundary conditions are clearly defined. 
 
3.1 Boundary conditions for the species s 
 

Plasma/surface interactions are very complex 
phenomena which involve all the plasma 
parameters, the nature of the solid, its surface 
treatment etc... In our modeling frame, such 
complex aspects are excluded. The aim is rather 
to get a simplified, coherent and easy to upgrade 
model of such interactions. 

In the case of DBDs, one could imagine in a 
first step that the solid surrounding the plasma is 
a perfect dielectric. In these conditions, 
considering the absence of mobility of charged 
particles in such a solid, it comes naturally that 
the boundary conditions for charged particles is a 
zero normal flux toward the surface. Indeed, as 
the dielectric is assumed ideal, no charged 
particle can cross its surface. However, this 
approach leads to fundamental problems. 

With this approach, it is impossible to 
describe one of the fundamental properties of a 
plasma which is its sheath. Indeed, this small 
charged electric area near the walls is directly 
linked to the development of a surface charge on 
the dielectric (and generally, any material in 
contact with the plasma). 

Another problem of this approach is that, 
under the influence of an electric field, the 
charged particles will drift toward the wall and 
form there a quasi-surface charge. That will lead 
to strong density gradients and consequently 
numerical divergences 

A zero normal flux at the plasma/surface 
interface forbids as well the emission of charged 
particles at the walls (the secondary emission for 
example). 

As a result it is obvious that, for a numerical 
modeling, even in first approximation, the 
dielectric walls cannot be considered as a simple 
obstacle to the particles motion. Consequently, a 
surface charge density localized at the interface 
dielectric/plasma must be defined. This surface 
charge strongly depends on parameters such as 
the nature of the dielectric, its surface treatment, 
the nature of the charges from the plasma etc... 
In order to keep the DBD model simple enough 
to perform computation in a reasonable time, 
some simplifications concerning the 
plasma/surface interactions must be taken into 



consideration. Then simplified boundary 
conditions must be established for any 
considered specie. 

Considering the electrons, their mobility in 
the silica glass is neglected and it will be 
assumed that the electrons do not penetrate in the 
dielectric. As a result, an electron in the 
neighborhood of the dielectric will be trapped at 
the dielectric surface until: 

- the presence of a positive charge coming 
from the plasma leads to a recombination, 

- the electron is released. Indeed, the 
electrostatic potential well near the dielectric 
surface has not an infinite dept in reality and 
there is a probability that the electrons escape 
from that attraction. 

Considering the ions, they will be submitted 
to the same electrostatic attraction on the 
dielectric than for an electron. However, once at 
the surface, they will be neutralized according to 
mechanisms depending on their nature and on 
the nature of the dielectric. The dielectric 
commonly used for Excilamps, and consequently 
considered here, is fused silica. 

When an ion gets in contact with such a 
dielectric surface, it is neutralized. The involved 
mechanisms are depending on the ionization 
potential of the ion and two cases are 
distinguished [2]: 

- if this potential is over 10eV, the ion will 
recombine at the surface by Auger effect or by a 
resonant process. 

- if this potential is lower than 10eV, the ion 
cannot recombine at the surface and will cross 
the wall and then move as an ion in the material. 

Atoms considered in the frame of that work 
are exclusively rare gases and their ionization 
potentials are above 10eV. Consequently, only 
the first neutralization mechanism will be 
considered. 

Consequently, the ions in the neighborhood 
of the dielectric wall are attracted and recombine 
at the surface, leaving a positive charge attached 
to the dielectric. It is assumed here that the 
recombination is instantaneous and that the 
resulting positive charge fixed on the dielectric 
can only disappear by recombination with an 
electron from the plasma. 

It is assumed in the frame of that work that 
neutral particles such as metastable or excited 
atoms instantaneously loose their energy on the 
dielectric surface and consequently become 

atoms at the fundamental state. Their density is 
then zero at the surface. 

Taking into account all the previous 
considerations concerning interactions between 
the different kind of species and the dielectric 
surface, the equations for the boundary 
conditions for the system (4) consist in coupling 
volume densities and surface densities of 
charges. 

The equation of the evolution of the surface 
density of electrons sen  (trapped electrons at the 
dielectric surface) is: 
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in the right part of this equation: 
- the first term corresponds to the attraction 

of the volume electrons due to the polarization 
charge of the dielectric. The reaction rate is 
written sadseK . 

- the second term corresponds to the 
desorption of the surface electrons with a 
reaction rate sdesK . 

- the last term corresponds to the 
recombination of the trapped electrons with ions 
coming from the plasma volume. The reaction 
rate is written srecK . 

As a result, the boundary condition for the 
electrons in volume is a flux condition which 
represents the balance between the volume 
electrons adsorbed at the surface, the surface 
electrons released in the volume by desorption 
and the volume electrons recombining with 
trapped positive charges: 

siesrecsesdesesadsene nnKnKnKu +−=Γ
rr

.  (6) 
For the ions, the evolution equation of 

positive charges density sin  trapped at the 
dielectric surface by ion neutralization is: 

siesrecisadsi
si nnKnK

dt
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−=  (7) 

in the right part of this equation: 
- the first term corresponds to the positive 

surface charges production by neutralization of 
the ions coming from the plasma volume. 
Assuming this neutralization instantaneous, the 
production rate of positive surface charges is 
equal to the adsorption rate of volume ions by 
polarization effect of the dielectric. This 
adsorption rate is written sadsiK . 



- the last term corresponds to the 
recombination of the positive surface charges 
with volume electrons. The reaction rate is 
written srecK . 

The boundary condition for the ions is a flux 
condition which represents the losses by 
neutralization and by recombination with 
surface: 

isesrecisadsini nnKnKu +=Γ
rr

.  (8) 
Neutral species such as metastables are 

supposed to loose instantaneously their energy at 
the boundary and so coming back to the 
fundamental state. The boundary condition for 
these species is consequently a Dirichlet 
condition: 

0=sn  (9) 
 
3.2 Boundary conditions for Poisson's 
equation 
 

The continuity of the potential involves a 
constraint on the metallic electrodes on the 
outside face of the dielectrics (Dirichlet 
conditions). This kind of boundary condition 
allows the user to define the applied voltage on 
the DBD. For example, if the DBD is supplied 
with a sine wave form at 50kHz and with a 
maximum amplitude of 5kV, the boundary 
conditions will be: 

)10502sin(5000)2( ;0)1( 3telectrodeVelectrodeV ×== π
 (10) 

On the other hand, a Neumann boundary 
condition can be used on one electrode. In this 
case, the electric field is imposed at the boundary 
of the neighbor dielectric which is directly 
associated to the total current flowing in the 
discharge. For example, if the DBD has a 
dielectric surface of A and is supplied with a 
current I , the boundary conditions will be: 

dt
A
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 (11) 
With the boundary conditions (10) and (11), 

the discharge can be supplied either in voltage or 
in current. 
 
4 Methods  
 

The model previously described is 
implemented in COMSOL, considering a DBD 

in pure Xenon, with 8 different species according 
to figure 1. 
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Figure 1. Kinetics chosen for the DBD in pure Xenon 

 
Each specie corresponds to a diffusion-

convection, transient analysis, equation coupled 
to Poisson's equation. The ODE governing the 
surface charges, sen  and sin , are implemented 
through "weak form, boundary" equations. 

The model is solved in a geometry 
corresponding to [3], which means a 
homogeneous discharge between two plane 
electrodes covered with dielectrics (with a 
relative permittivity equal to 4, which 
approximately corresponds to the silica glass). 
Edge effects are neglected and consequently, the 
problem can be solved in 1D. The figure 2 
presents the discharge geometry and the 
associated resolution domains. The resolution 
domain for all the species is between points B 
and C, which corresponds to the discharge 
domain. The boundaries are consequently at 
these two points. For the potential, the resolution 
domain is from point A to point D. The 
boundaries are in this case the points A, B, C, D. 
The metallic electrodes are assumed infinitely 
thin and they are only supposed to fix the 
potential at 0 in A (mass connection) and the 
voltage (or current) source in D. 

Inter-electrode space (discharge volume) is 
filled with Xenon at 5.3x104Pa (400 torrs). 

Streamline diffusion was used to stabilize the 
numerical solutions for electrons and ions. 
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Figure 2. Discharge geometry and associated 
resolution domains 
 
5 Numerical Model  
 
5.1 Spatial and temporal evolution of the 
species 
 

The figures 3 and 4 present the evolutions, in 
the discharge volume, respectively of the 
electron density and excimer density on two 
periods of sine wave 50kHz, 8kV peak, voltage 
source, when a permanent regime is achieved. 
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Figure 3. Evolution of the electron density. 
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Figure 4. Evolution of the excimer density. 
 
5.2 Evolution of the electrical parameters 
 

Figure 5 presents the spatio-temporal 
evolution of the electric field in the discharge. 
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Figure 5. Evolution of the electric field. 
 

Figure 6 presents the evolution of the 
electrical parameters of the discharge. 
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Figure 6. Evolution of the electrical parameters - 

Sν :voltage applied by the voltage source; Gν : 
voltage drop in the discharge volume (between 
points B and C in the figure 2; Ti : total current 
density (receptor convention). 



5.3 Evolution of the UV emission 
 

Considering the kinetics of the discharge 
shown in figure 1, the UV photon flux, at 
172nm, at a point x at time t is: 
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where 13K  and 14K  are the radiative 
dissociation rates of excimers. Consequently, the 
total flux (UV power emitted) of the discharge at 
time t is: 
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with: 
h : Planck's constant (6.626.10-34J.s). 

172v : frequency of a photon at 172nm 
(1,74.1015Hz). 

S  section of the discharge (10-4m2) 
Consequently, the efficiency of the discharge 

can be computed for various power supply wave 
forms as the ratio between the mean UV emitted 
power and the mean electrical power delivered to 
the discharge. 
 
6. Discussion 
 

The model described here was used to 
compute the efficiency 172η  of the excilamp for 
a sine waveform voltage source of 8kV peak. 
The results are presented on figure 7 for 
frequencies between 50kHz and 350kHz. 
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Figure 7. Efficiency of the excilamp supplied 
with a sine waveform voltage source. 
 

Figure 8 presents the results obtained for a 
pulsed waveform voltage source at 50kHz, 8kV 
peak for various duty ratio. 

 

 

10 30 40 50 80
0.55

0.6

0.65

0.7

0.75

0.8

Rapport cyclique α  (%)

η172

 
 
 
Figure 8. Efficiency of the excilamp supplied 
with a pulsed waveform voltage source. 
 
The results mentioned in figure 7 and 8 show 
clearly that a pulsed voltage waveform increase 
significantly the efficiency of the excilamp. 
 
7. Conclusions 
 

The model presented here describes the 
evolution of a DBD excilamp for various power 
supplies. It represents an essential tool for the 
optimization of the coupling between the 
discharge and its power supply. Moreover, it will 
help in the design of innovative power supply 
topologies in order to achieve a high level of UV 
power and efficiency of excilamps. 
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