

A Manufacturing Technology Center of Excellence

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

James E. Toney
Penn State Electro-Optics Center
October 8-10, 2009

Outline

- Operation of a semiconductor radiation detector
- Hole tailing and the need for special electrode configurations
- Comsol-Matlab model
- Planar vs. Quasi-hemispherical detectors

Semiconductor Radiation Detector Geometry

- A bias voltage is applied to the detector.
- Interaction creates N₀ electron-hole pairs, proportional to the energy deposited by the photon.
- The charge carriers move to the electrodes, inducing a current.
- The integrated current should be qN₀.

Signal Generation in a Semiconductor Detector

$$N(t)=N_0e^{-t/\tau_e}$$
 Application of Ramo's theorem $Q_e=\int_0^{t_{ce}}I_e(t) dt$

Putting these 3 equations together and adding the hole contribution gives the Hecht relation:

$$Q = \frac{qN_0E}{d} \left[\left(\mu\tau\right)_e \left(1 - e^{-\left(d - x_0\right)/\left(\mu\tau\right)_e E}\right) + \left(\mu\tau\right)_h \left(1 - e^{-x_0/\left(\mu\tau\right)_h E}\right) \right]$$

"Hole Tailing" in Wide- PENNSTATE **Bandgap Semiconductors**

Typical charge collection profile from Hecht relation

⁵⁷Co spectra for two CdZnTe detectors 10x10x3 mm³

Electrode Designs to Correct for Hole Tailing

Various ways to weight signal induction towards the anode:

- Coplanar Grid
 - Subtract signals from two interdigitated electrodes
 - Need two preamplifiers plus differencing amp
- Segmented
 - "Small-pixel effect"
 - Need a separate amplifier for each pixel or strip
- Guard Ring Structures
 - "Frisch grid" to shield the anode
- Coaxial
 - Machine crystal into cylindrical shape and drill a hole through the center
- Quasi-hemispherical

Signal Generation for Arbitrary Electrode Configurations

General Form of Ramo's Theorem

$$i(t) = q v.E_1$$
 (E_1 ="weighting field")

Constant Mobility Approximation

$$\mathbf{V} = \mu_{e(h)} \mathbf{E}$$

Constant Trapping Lifetime, No De-trapping $q(t)=q_0 e^{-t/t_{e(h)}}$

Put it all together

$$\frac{Q_{e(h)}}{eN_0} = \int_{0}^{t_{c,e(h)}} \mu_{e(h)} e^{-t/\tau_{e(h)}} \vec{E} \cdot \vec{E}_1 dt$$

Comsol Radiation Detector Model

- Electrostatics with Conductive Media application mode to compute electric fields
- Export FEM structure to Matlab
- Integrate induced current in Matlab to compute charge collection efficiency as a function of interaction point
- Repeat for numerous interaction points to get a charge collection profile

"We Honor Those Who Serve"

FEM Model for Planar Detector

For the case of two electrodes, one grounded, the physical and weighting fields are the same except for a factor of the bias voltage.

Integration of Electron/Hole Currents

- Discretize the integral
- Take constantdistance jumps for better efficiency
- Repeat until a boundary is reached
- Compute electron and hole contributions separately and add

$$\frac{Q_{e(h)}}{eN_0} = \sum \mu_{e(h)} e^{-t_i/\tau_{e(h)}} \vec{E}(\vec{r_i}) \cdot \vec{E}_1(\vec{r_i}) \Delta t_i$$

$$\Delta t_i = \frac{\Delta r}{\mu_{e(h)} \left| \vec{E}(\vec{r}_i) \right|}$$

$$\Delta \vec{r}_i = \mu_{e(h)} \vec{E}(\vec{r}_i) \Delta t_i$$

Charge Collection Profile PENNSTATE for Planar Detector

- **Comsol-Matlab** model
- **Hecht equation**

Charge Collection Histogram for Planar Case

FEM Model for Quasi-Hemispherical Detector

Anode (applied bias) Insulating surface X-Z Section of Equipotential Map

Cathode (grounded)

Electron and Hole Current Waveforms

Charge Collection Profiles PENNS Quasi-Hemispherical Case

ENINSTATE 1855

- Center Line of Crystal
- Near Edge of Anode
- Near Corner of Crystal

Electro-Optics Center

Charge Collection Histogram STATE **Quasi-Hemispherical**

Conclusions

- Comsol Multiphysics with Matlab can easily compute signal generation in semiconductor detectors with arbitrary electrode configurations.
- Quasi-hemispherical detector can improve energy resolution and photopeak efficiency in compound semiconductor detectors without grid bias or multiple readout amplifiers.

Thank You!

James E. Toney, Ph.D.

Research Engineer, Fiber Optics, Photonics and Engineering Division

Penn State University Electro-Optics Center

222 Northpointe Blvd.

Freeport, PA 16229

jtoney@eoc.psu.edu

www.electro-optics.org