

Politecnico di Torino

A. Ricci, E. Giuri

Outline

- Brief Presentation of Materials and Microsystems Laboratory
- Fluid Structure Interaction Problem (FSI)
 - Analytical Model
 - FSI in Time Domain
 - FSI in Frequency Domain
- Results
- Conclusion and Future Works
- References

A. Ricci, E. Giuri

Materials and Microsystems Laboratory, is managed by Politecnico di Torino and works on the design and realization of micro and nano systems prototypes with a specific focus on technological transfer.

http://www.polito.it/micronanotech

MEMS simulation activity is required for the design of microstructures or for their performance prevision. **F.E.M.** Simulations of microstructures behaviour is carried out by Comsol MultiphysicsTM

European COMSOL Conference 2009

ar 75 micron - interno

A. Ricci, E. Giuri

Fluid Structure Interaction (FSI)

of Microcantilivers Vibrating in Fluid Environment for Biosensing Applications

for genomic and proteomic detection

Microcantilever based Bio-Sensor

Dynamic Measurement conducted evaluating

Q factors and Resonance Frequency

A. Ricci, E. Giuri

FSI Problem

Analytical Model

$$\frac{\omega_{R,n}}{\omega_{\text{vac},n}} = \left[1 + \frac{\pi\rho b}{4\rho_c h} \Gamma_r^f(\omega_{R,n}, n)\right]^{-1/2}$$

$$Q_n = \frac{(4\rho_c h/\pi\rho b) + \Gamma_r^f(\omega_{R,n}, n)}{\Gamma_i^f(\omega_{R,n}, n)}$$

Assumptions

• *it is exact for a beam of infinite length vibrating in an incompressible viscous fluid*

• thickness should be negligible compared to the length

• cantilever should have a constant cross section along the length

modal cross talk is not taken in account

Ref. C. A. Van Eysden, J. E. Sader, *Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order*, J. Appl. Phys., 101, 044908 (2007).

A. Ricci, E. Giuri

FSI Problem in Time Domain

2D Models:

- They hold only when length >> thickness and just for low mode numbers
- Time domain analysis
 - Fitting step (possible source of inaccuracy)

Ref. W. Zhang, K. Turner, *Frequency dependent fluid damping of micro/nano flexural resonators: Experiment, model and analysis*, Sens. Act. A, **134**, 594–599 (2007).

A. Ricci, E. Giuri

Ref. J. H. Lee, S. T. Lee, C. M. Yao, W. Fang, *Comments on the size effect on the microcantilever quality factor in free air space*, J. Micromech. Microeng., **17**, 139–146 (2007).

Ref. S. Basak, A. Raman, *Hydrodynamic loading of microcantilevers vibrating in viscous fluids*, J. Appl. Phys, **99**, 114906 (2006).

A. Ricci, E. Giuri

FSI Problem in Time Domain: drawbacks

- Initial displacement applied on the cantilever free end [Lee]
- Vacuum eigenfrequency analysis results are the input for the time dependent analysis in fluid environment [Basak]
- Time dependent analysis
- Data fitting and filtering steps (Prony analysis) possible sources of inaccuracy
- Modal cross talk in not taken into account

European COMSOL Conference 2009

A. Ricci, E. Giuri

FSI Problem in Frequency Domain

Frequency Domain FSI Analysis vs Time Domain FSI Analysis

• On equal mesh density, an eigenfrequency analysis is certainly less time consuming than a time domain one

• The convergence study regards just the mesh density and not, as in the time domain approach, both mesh density and time parameters

• Mode shapes and frequency in fluid are directly calculated so that no curve fitting step is needed. A possible source of inaccuracy is therefore eliminated

A. Ricci, E. Giuri

FSI Problem in Frequency Domain

A. Ricci, E. Giuri

FSI Problem in Frequency Domain

Approximation 2

Fluid vorticity, plays a significant role just in proximity of the vibrating structure; it is possible to further simplify Stokes equations in the region of fluid domain sufficiently far from the cantilever.

 $\Phi = Scalar \ Velocity \ Potential$

Equations in frequency domain

 $-\nabla p + \mu \nabla^{2} \vec{v} = \rho_{f} j \vec{\omega v} \quad \blacksquare$ $\nabla \cdot \vec{v} = 0 \quad \blacksquare$

$$p_{irr} = -\rho_{f} j \omega \phi$$

A. Ricci, E. Giuri

A. Ricci, E. Giuri

FSI Problem in Frequency Domain

Boundary Conditions

mimics an "open" condition since the value of the pressure is constrained to zero.

A. Ricci, E. Giuri

FSI Problem in Frequency Domain

Symmetry Conditions

Since the model is symmetrical with respect to xz plane, symmetry conditions are required both for the solid and the fluid domains

A. Ricci, E. Giuri

FSI Problem in Frequency Domain

Solver Parameters	
Analysis types	General Eigenfrequency Adaptive Advanced
Solid, Stress-Strain (smsld) Damped eigenfrequency Stokes Flow (mmglf) Stationary Mesh Statistics Global Subdomain Boundary Edge Point	Eigenfrequency Desired number of eigenfrequencies: 1 Search for eigenfrequencies around: 70000 Linear system solver Linear system solver: Direct (PARDISO)
Extended mesh: Number of degrees of freedon: 162970 Base mesh: Number of mesh points: 7497 Number of elements: 40390 Tetrahedral: 40390 Prism: 0 Hexahedral: 0 Number of boundary elements: 4092 Triangular: 4092 Quadrilateral: 0 Number of edge elements: 294 Number of vertex elements: 18 Minimum element quality: 0.3394 Element volume ratio: 2.02E-6 OK Help	Our method (Comsol Multiphysics)Stokes equations are written in frequency domainAn eigenvalue problem is obtained $Q_{fluid} = \left \frac{\operatorname{Im}(\lambda)}{2\operatorname{Re}(\lambda)} \right $ $f_{fluid} = \left \frac{\operatorname{Im}(\lambda)}{2\pi} \right $ λ is a complex eigenvalue representing a complex angular frequency.

A. Ricci, E. Giuri

Results: benchmark with the analytical model

Ref. C. A. Van Eysden, J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order, J. Appl. Phys., 101, 044908 (2007).

A. Ricci, E. Giuri

pw1, 2 "present work") results about the first two mode Q factors in air environment of cantilever C2 [9, 14].

A. Ricci, E. Giuri

Results: squeeze film damping simulation

Figure 9. Detail of the 3D FSI model about a cantilever vibrating near a surface at distance g_0 [15]. Only the near field is showed.

		_				_					
f ^e vac	shift [°] air	f ^a vac		shift ^a _{air}		f ^{s1} vac		shift ^{s1} _{air}		shift ^{s2} _{air}	
data (KHz)	data	data (KHz)	err %	data	err %	data (KHz)	err %	data	err %	data	err %
18.33	-2.10	18.45	0.68	-0.74	-64.91	18.54	1.16	-1.00	-52.42	-0.07	-96.67

of cantilever A [15].

Table 2a. Comparison between experimental (e) [15], analytical (a) [18] and computational results (subdivided in the ones calculates through the full 3D FSI model, "s1" superscript, and those obtained by the "Solid, stress-strain with film Damping" application mode, "s2" superscript) about the first mode resonance frequency of cantilever A [15].

A. Ricci, E. Giuri

Conclusions

A. Ricci, E. Giuri

Future Works

Design and optimization of a fluid cell containing a vibrating Cantilever Plate

- Eigenfrequency Analyses in Fluid Environment
- Frequency Response Analyses in Fluid Environment with Magnetic Excitation

A. Ricci, E. Giuri

References

1. R. Lifshitz, M. L. Roukes, *Thermoelastic damping in micro- and nanomechanical systems*, Phys. Rev. B, **61**, 5600-5609 (2000).

2. M. Bao, Squeeze film air damping in MEMS, Sens. Act. A, 136, 3-27 (2007).

3. E. O. Tuck, Calculation of unsteady flows due to small motion of cylinders in a viscous fluid, J Eng. Math, **3**, 29-44 (1969)

4. Y. Kerboua, A.A. Lakis, M. Thomas, L. Marcouiller, Vibration analysis of rectangular plates coupled with fluid, Appl. Math. Mod., **32**, 2570–2586 (2008).

5. Weiss, K. Reichel, Jakoby, *Modeling of a clamped–clamped beam vibrating in a fluid for viscosity and density sensing regarding compressibility*, Sens. Act A., **143**, 293–301 (2008).

6. W. Zhang, M. Requa, K. Turner, *Determination of Frequency Dependent Fluid Damping of Micro and Nano Resonators for Different Cross-Sections*, Nanotech 2006 Boston, MA May (2006)

7. W. Zhang, K. Turner, *Frequency dependent fluid damping of micro/nano flexural resonators: Experiment, model and analysis*, Sens. Act. A, **134**, 594–599 (2007).

8. J. H. Lee, S. T. Lee, C. M. Yao, W. Fang, *Comments on the size effect on the microcantilever quality factor in free air space*, J. Micromech. Microeng., **17**, 139–146 (2007).

9. S. Basak, A. Raman, *Hydrodynamic loading of microcantilevers vibrating in viscous fluids*, J. Appl. Phys, **99**, 114906 (2006).

10. J. E. Sader, *Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope*, J. Appl. Phys., **84**, 64-76 (1998).

11. http://en.wikipedia.org/wiki/Prony's method 12. G.K. Batchelor, *An Introduction to Fluid Dynamics*, **169**, Cambridge University Press, Cambridge (1967).

13. Comsol Multiphysics 3.5a Manuals 14. J. W. M. Chon, P. Mulvaney, J. E. Sader, *Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids*, J. Appl. Phys., **87**, 3978-3988 (2000).

15. Cocuzza et al., Silicon laterally resonant microcantilevers for absolute pressure measurement with integrated actuation and readout, J. Vac. Sci. Technol. B, **26**, 1071-1023 (2008).

16. C. A. Van Eysden, J. E. Sader, *Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order*, J. Appl. Phys., **101**, 044908 (2007).

17. F. J. Elmer, M. Dreier, *Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium*, J. Appl. Phys. **81**, 7709 -7714 (1997).

18. C. P. Green, J. E. Sader, *Frequency response of cantilever beams immersed in viscous fluids near a solid surface with applications to the atomic force microscope*, J. Appl. Phys. **98**, 114913 (2005).

A. Ricci, E. Giuri

Thanks For Your Attention

A. Ricci, E. Giuri

FSI Problem in Frequency Domain

Near Field

Domain Optimization

Near Field

