COMSOL Multiphysics as a Tool to Increase Safety in the Handling of Acetylene Cylinders Involved in Fires

Fabio Ferrero

BAM Federal Institute for Materials Research and Testing Division II.1 "Gases, Gas Plants" Working Group "Safety Related Properties of Gases" Unter den Eichen 87, D-12205 Berlin, Germany

Background

- Acetylene (C_2H_2) is commonly used for cutting and welding purposes
- Normally stored in compressed gas cylinders
- Acetylene cylinders involved in fire can burst

Explosion of a fully charged 40 dm³ acetylene cylinder (bonfire test)

- Previous accidents:
 - Schutterwald, Germany, accident in a private workshop (1994)
 - Brisbane, Australia, accident in an acetylene factory (1999)
 - Dallas, USA, accident in a gas factory (2007)

Consequences

Economical and human losses (fireball, ejection of fragments)

Objectives

Important to know:

- heating up process
 - time to explosion
- critical temperature / pressure in the cylinder
 - acetylene can decompose with high heat release (226 kJ/mol)
- cooling with water
 - the cylinder can be safely handled after the fire

A mathematical model to predict the heat transfer in the acetylene cylinder has been developed and solved in COMSOL Multyphysics

Acetylene cylinder:

- steel wall
- the inside is not a free space, but a complex system

Composition cylinder inside:

- porous material
- acetone (liquid/vapour)
- acetylene (free/dissolved)

Composition cylinder inside:

- porous material
- acetone (liquid/vapour)
- acetylene (free/dissolved)

Free space

- free acetylene
- acetone vapour

Implementation in COMSOL

Geometry (50 dm³): 2D Axial symmetric (computing time reduction)

Mesh

- elements: 10740
- nodes: 6045
- degrees of freedom: 40633

(1)

Heat transfer through conduction

$$\rho_i c_{p,i} \frac{\partial T}{\partial t} = \lambda_i \text{ div grad } T$$
(1)

i=1 steel wall (COMSOL library)

$$\rho_i c_{p,i} \frac{\partial T}{\partial t} = \lambda_i \operatorname{div} \operatorname{grad} T \tag{1}$$

- i=1 steel wall (COMSOL library)
- i=2 porous material / acetone (g,l) / acetylene (d,f) (polynomial functions)

(i=2)

r=0

Simulation: domains and equations

COMSOL CONFERENCE Milan, October 14-16 2009

(1)

Simulation: domains and equations

Simulation: domains and equations

Heat transfer through conduction/convection

$$\rho_{j}c_{P,j}\frac{\partial T}{\partial t} = \lambda_{j} \operatorname{div} \operatorname{grad} T - \rho_{j}c_{P,j} \vec{u} \cdot \operatorname{grad} T \qquad (2)$$

Momentum equation (Navier Stokes)

$$\rho_{j}\frac{\partial \vec{u}}{\partial t} + \rho_{j}\vec{u}\cdot\nabla\vec{u} = -\nabla p + \eta_{j}\nabla^{2}\vec{u}$$
(3)

Continuity equation

$$\frac{\partial \rho_j}{\partial t} + \nabla \cdot \left(\rho_j \, \vec{u} \right) = 0 \tag{4}$$

j=1 air (heating up) j=2 water (cooling)

Simulation: boundary settings (heating)

40maro gas velocit

$$u = u(z) = -4u_{\max}z(1-z) \text{ or } -u_{\max}$$
 (5)

$$v = v(r) = 4v_{\max}r(1-r)$$
 or v_{\max} (6)

Both currents are at $T_{flame} = 1000^{\circ}C$

COMSOL CONFERENCE Milan, October 14-16 2009

r=0

Initial temperature: $15^{\circ}C$ $u_{max} = 2 \text{ m/s}$ $v_{max} = 5 \text{ m/s}$ t = 1800 s

Min: 15.017

COMSOL CONFERENCE Milan, October 14-16 2009

Critical temperatures can be achieved

 $p_0 = 10 \text{ bara, T=370}^{\circ}\text{C}$ (V= 3 dm³)

COMSOL CONFERENCE Milan, October 14-16 2009

Critical temperatures can be achieved

 $p_0 = 10 \text{ bara, T=370}^{\circ}\text{C}$ (V= 3 dm³)

Temperature in the gas cavity as a function of:

upward gas velocity (range 0-4 m/s)side wind speed (range 0-2 m/s)

Strong effects on the simulations

Simulation: boundary settings (cooling)

Initial temperature	Water temperature	Time to 350°C	Time to 300°C
[°C]	[°C]	[h]	[h]
400	20	10.1	13.8
400	30	10.3	14.1
400	80	10.5	15.5

Take with caution:

- 400°C may be too conservative
- include acetylene reaction (decomposition)

 $v_{max} = 1 \text{ m/s}$

Conclusions

COMSOL Multiphysics can help in increase the safe handling of acetylene cylinders involved in fire by predicting the:

- time to explosion due to fire exposure
- duration of the cooling with water after the fire

Future work

- comparison with experiments (some have been already performed)
- determination of critical temperatures/pressures for the decomposition
- inclusion of the pressure in the model
- inclusion of the decomposition reaction

COMSOL Multiphysics as a Tool to Increase Safety in the Handling of Acetylene Cylinders Involved in Fires

Fabio Ferrero

BAM Federal Institute for Materials Research and Testing Division II.1 "Gases, Gas Plants" Working Group "Safety Related Properties of Gases" Unter den Eichen 87, D-12205 Berlin, Germany

