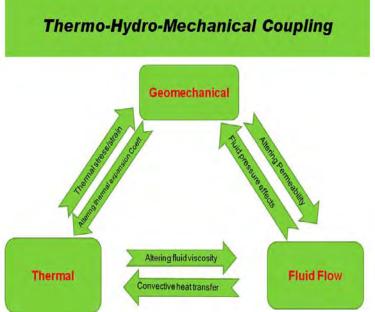
COMSOL Conference, October 2008, Boston

THM Modeling for Reservoir Geomechanical Applications

Tony T. Freeman¹, Rick J. Chalaturnyk¹ Igor I. Bogdanov²

¹University of Alberta, Canada ²Centre Huile Lourde Ouvert et Expérimental, France

Introduction

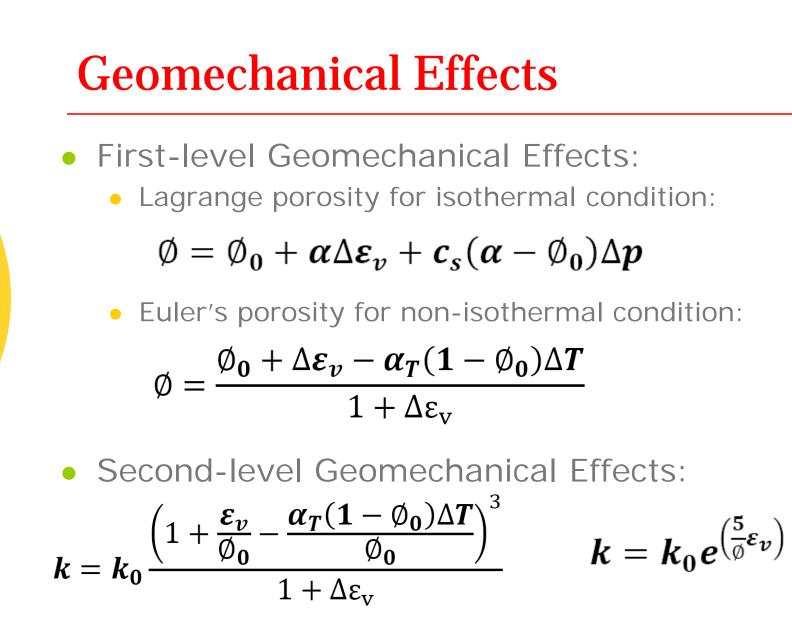

- Why THM important in geomechanics?
 - Dealing with "porous media" requires mechanical as well as fluido-dynamical physics (fully coupled)
 - Temperature can significantly influence the mechanical and hydraulic properties of porous media
- The THM will help simulate:
 - Wellbore stability; thermal well testing; Hydraulic fracturing; Thermal recovery methods such as steam injection, electrical and electromagnetic heating; Surface subsidence; stimulation techniques such as pressure pulse; and chemical applications such as CO2 sequestration

Why COMSOL Multiphysics?

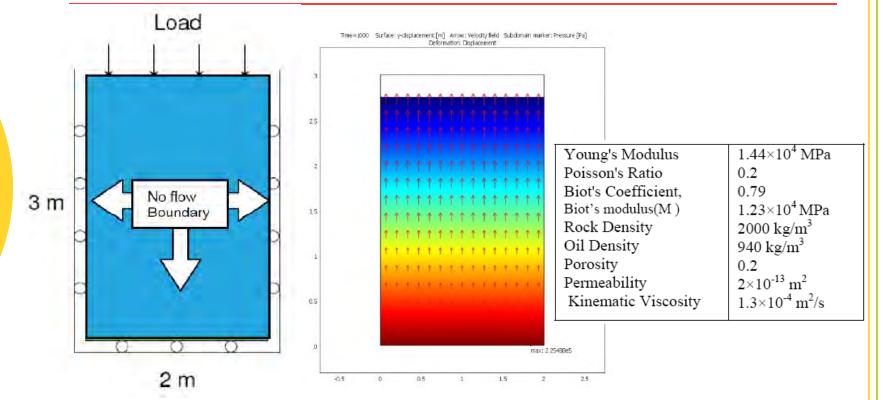
- Fully coupled analysis capability
- PDE application mode can solve multiple, coupled, nonlinear physical models through their governing PDE's
- Compatibility with MATLAB provide extra control over the solution
- Built-in application modes
 - Electromagnetic
 - Chemical
 - Acoustic
- Spatial variability of parameters
- Transient parameter change

Thermo-Hydro-Mechanical Model

- THM deals with 3 physics:
 - Heat transfer (convection/ conduction)
 - Fluid flow (single/multi phase)
 - Mechanical stresses and strains (elastic/ elasto-plastic/ thermal elasto plastic constitutive model)
- Relative strength of coupling links varies (1st /2nd level)

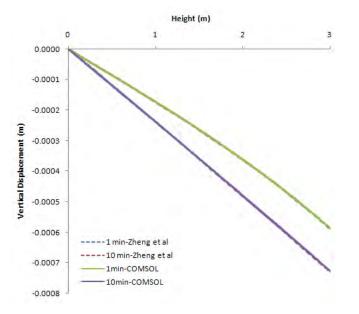


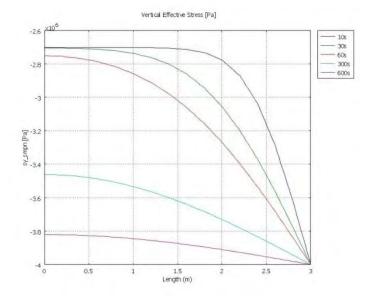
Governing Equations


- Conservation of momentum
- Conservation of mass
- Conservation of energy
- Darcy's law
- Biot's poroelasticity

Governing Equations

- > Two-phase Flow (o,w)
- Buckley-Leverett formulation (Pc=0)
- Three phase (o, w, steam), Two component(o,w)
- Thermal effects:
 - Generation of thermal stress
 - Conduction & convection equations
 - Conservation of thermal energy

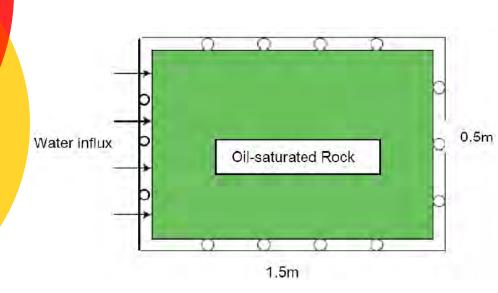

Verifying the Model: 1) Uniaxial Compression



A saturated rock sample undergoing uniaxial compression

Upward water flux due to mechanical deformation.

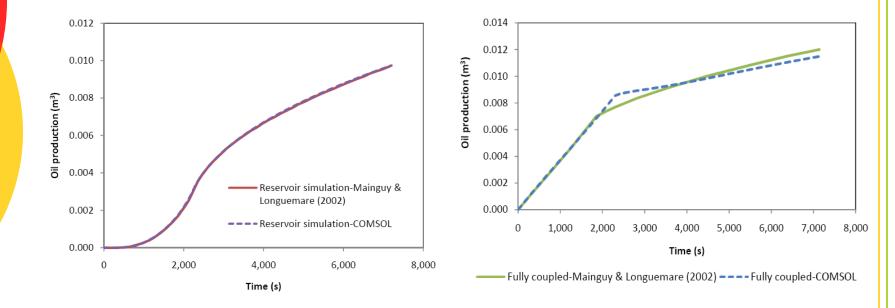
Verifying the Model: 1) Uniaxial Compression



Vertical displacements along the sample at different times after loading

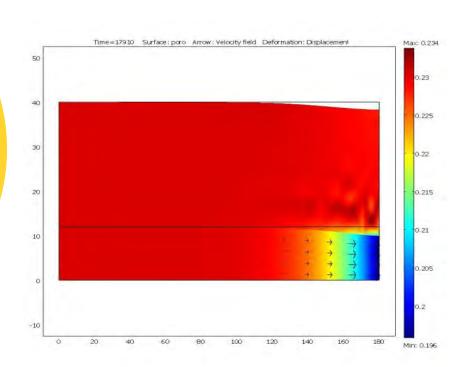
Effective stress along the sample at different times after loading directly from fully coupled hydro-mechanical model.

Verifying the Model:2) Water Flooding

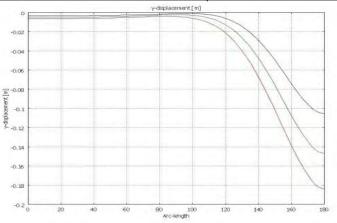

A confined oil-saturated rock sample subject to constant water influx on one side

Oil viscosity	0.500 Pa∙s
Water viscosity	0.001 Pa·s
Intrinsic permeability	$5 \times 10^{-14} \text{ m}^2$
Initial porosity	0.30
Initial oil density	950 kg·m ^{−3}
Initial water density	1000 kg·m ^{−3}
Water compressibility	4 x 10 ⁻¹⁰ Pa ⁻¹
Oil compressibility	0.000 Pa ⁻¹
Water top influx	0.02 kg·m ⁻² ·s ⁻¹
Drained elastic modulus	3 x 10 ⁹ Pa
Poisson's ratio	0.3
Drained bulk modulus	2.5 x 10 ⁹ Pa
Rock shear modulus	1.15 x 10 ⁹ Pa
Biot's coefficient	1
Total displacement	0.000 m
Relative permeability of water	Sw ²
Relative permeability of oil	Sh ²

Oil saturation in the sample two hours after water flooding

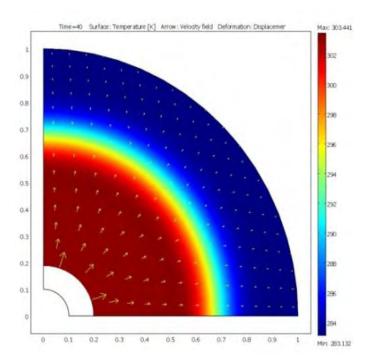

Verifying the Model:2) Water Flooding

Comparison of oil production from reservoir simulation model, Mainguy & Longuemare (2002) and COMSOL

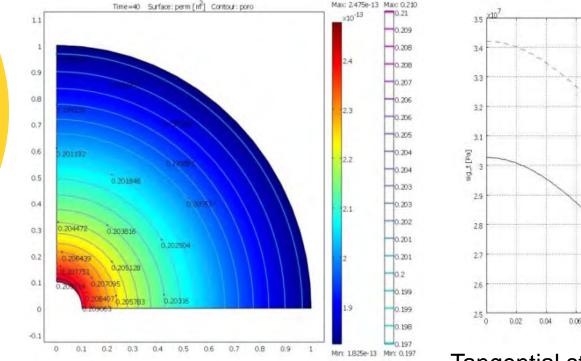

Comparison of oil production from fully coupled model, Mainguy & Longuemare (2002) and COMSOL

Application 1: Surface Subsidence

Surface subsidence as a result of oil production from a reservoir


0.1 Pa·s
$5 \times 10^{-13} \text{ m}^2$
$5 \times 10^{-14} \text{ m}^2$
0.23
970 kg·m ^{−3}
2000 kg·m ⁻³
0.005 m/h ⁻¹
1 X 10 ¹⁰ Pa
0.25
1.3 x 10 ¹⁰ Pa
0.85

Surface subsidence 2, 3, and 4 hours after production


Application 2: Fluid Injection I

Permeability	$5 \times 10^{-13} \text{ m}^2$
Injection Pressure	5 x 10 ⁷ Pa
Initial porosity	0.23
Initial fluid density	980 kg∙m ⁻³
Rock density	2800 kg·m⁻³
Elastic modulus	3 x 10 ⁹ Pa
Poisson's ratio	0.25
Biot's modulus (M)	1.3 x 10 ¹⁰ Pa
Biot's coefficient	0.85
Vertical in-situ stress	5.9 x 10 ⁶ Pa
Horizontal in-situ stress (Max)	6.11 x 10 ⁶ Pa
Horizontal in-situ stress (Min)	4.89 x 10 ⁶ Pa
Original temperature	293 K
Injection temperature	283 K
Viscosity: initial temperature	1.03x10 ⁻³ Pa∙s
Viscosity: injection temperature	1.34x10 ⁻³ Pa∙s
Heat Capacity	1140-1160J/kg/K
Thermal expansion coefficient	6.64x10 ⁻⁶ /K
Thermal conductivity	2.63 W/m/K
Well radius	0.1 m

Temperature distribution and wellbore deformation 40 s after water injection

Application 2: Fluid Injection I

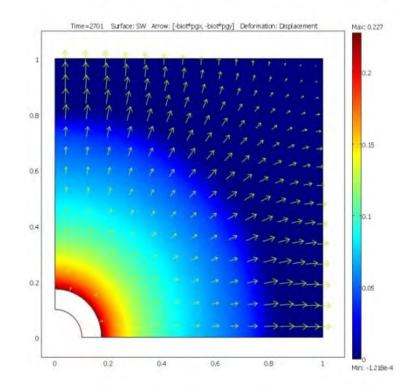
Permeability and porosity change as a function of volumetric strain Tangential stress around the wellbore for isothermal and nonisothermal fluid injection

0.1

0.08 Arc-lenath 0.12

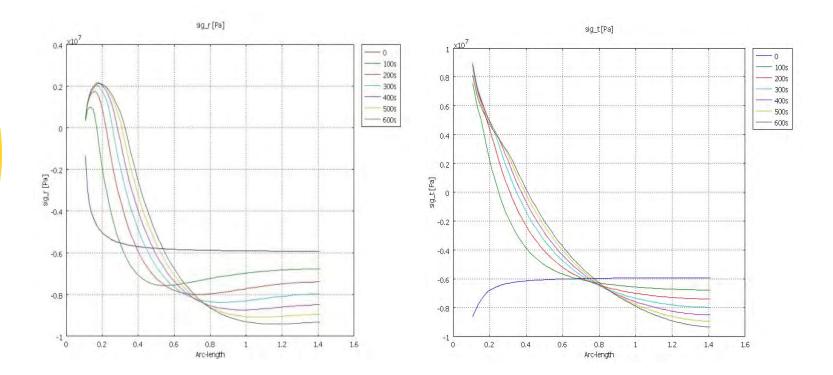
0.14

0.15


sig_t[Pa]

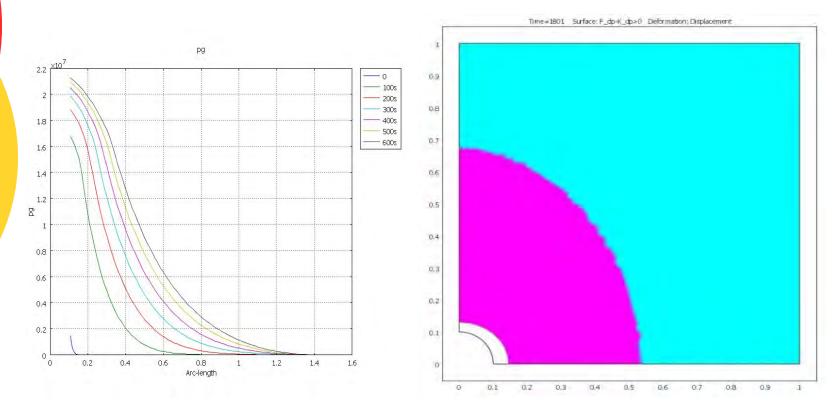
Temperature +20

Isotherma


Application 2: Fluid Injection II

Initial Permeability	$5 \times 10^{-14} \text{ m}^2$
Injection flux	$0.02 \text{ kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$
Initial porosity	0.3
Initial oil density	950 kg·m ^{−3}
Initial water density	1000 kg·m ⁻³
Rock density	2400 kg·m ⁻³
Elastic modulus	3 x 10 ⁹ Pa
Poisson's ratio	0.3
Biot's coefficient	0.9
Drained bulk modulus	3 x 10 ⁹ Pa
Vertical in-situ stress	6 x 10 ⁶ Pa
Horizontal in-situ stress (Max)	6.6 x 10 ⁶ Pa
Horizontal in-situ stress (Min)	5.4 x 10 ⁶ Pa
Original temperature	293 K
Injection temperature	293 K
Initial Oil viscosity	0.500 Pa·s
Initial Water viscosity	0.001 Pa·s
Thermal expansion coefficient	1x10 ⁻⁵ /K
Thermal conductivity	2.63 W/m/K
Relative permeability of water	S_w^2
Relative permeability of oil	S_h^2
Water compressibility	4 x 10 ⁻¹⁰ Pa ⁻¹
oil compressibility	1 x 10 ⁻¹⁰ Pa ⁻¹
Pore compressibility	1 x 10 ⁻⁹ Pa ⁻¹
Wellbore radius	0.1 m
Cohesion (C)	5 x 10 ⁵ Pa
Friction angle	30°
Yield criterion	Drucker-Prager

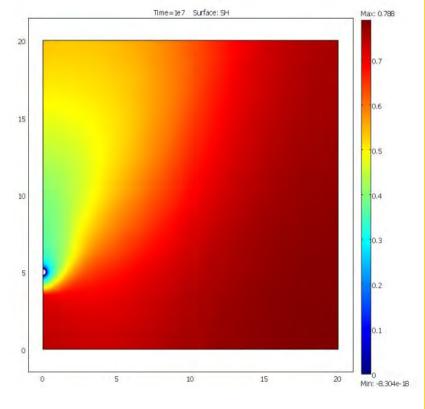
Saturation of injection fluid (water) into an oil saturated reservoir 45min after injection


Application 2: Fluid Injection II

Radial effective stress at different times after injection

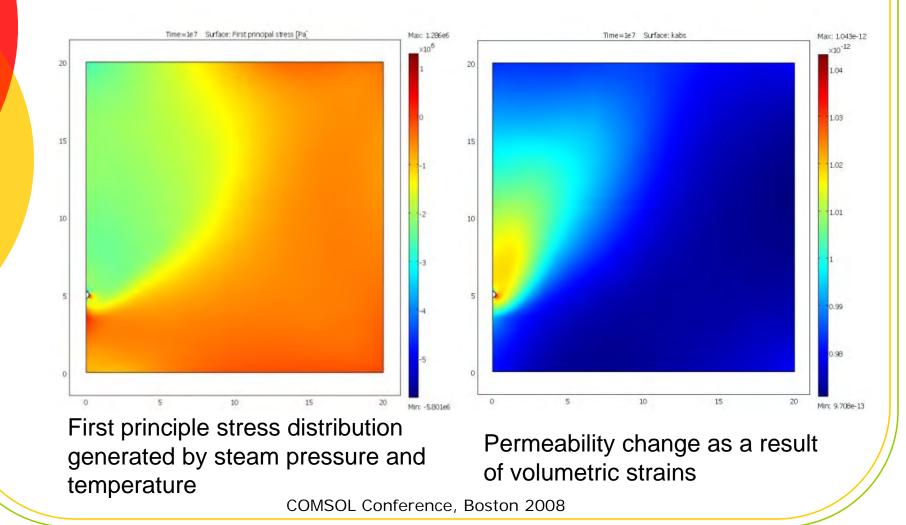
Tangential effective stress at different times after injection

Application 2: Fluid Injection II

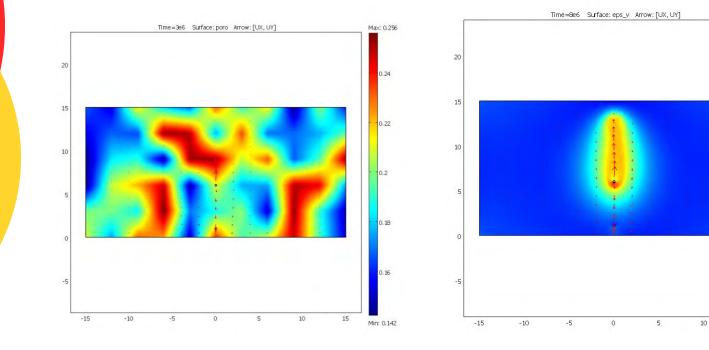


Fluid pressure at different times after injection

Plastic zone based on Drucker-Prager yield criterion 30min after injection


Application 3 : Steam Injection

Initial Permeability	$9.82 \times 10^{-13} \text{ m}^2$
Injection Pressure	1.084 x 10 ⁶ Pa
Initial reservoir pressure	9.825 x 10 ⁵ Pa
Initial porosity	0.32
Initial oil density	1010 kg·m ^{−3}
Initial water density	1000 kg·m ^{−3}
Rock density	2800 kg·m ^{−3}
Elastic modulus	1.4 x 10 ⁹ Pa
Poisson's ratio	0.3
Biot's coefficient	1.0
Vertical in-situ stress	0.0 Pa
Horizontal in-situ stress (Max)	0.0 Pa
Horizontal in-situ stress (Min)	0.0 Pa
Original temperature	273 K
Injection temperature	436 K
Thermal expansion coefficient	1.2x10 ⁻⁵ /K
Thermal conductivity	2.5 W/m/K
Water compressibility	4 x 10 ⁻¹⁰ Pa ⁻¹
oil compressibility	1 x 10 ⁻¹⁰ Pa ⁻¹
Pore compressibility	1 x 10 ⁻⁹ Pa ⁻¹



Distribution of oil saturation 115 days after injection

Application 3 : Steam Injection

Application 4 : SAGD

Heterogeneity in reservoir porosity, permeability and mechanical properties

Volumetric strains as a result of steam injection

Max: 2.936e-3 ×10⁻³

1.5

0.5

-0.5

Min: -8.268e-4

15

Future Work

- Examining a Thermal elasto-plastic (TEP) constitutive model for the material
- Electrical recovery
- Electromagnetic heating
- THM-Chemical for CO2 sequestration or other applications
- Pressure pulse technique
- Stochastic method for modeling heterogeneity

COMSOL Conference, October 2008, Boston

THM Modeling for Reservoir Geomechanical Applications

THANK YOU!