

$$\hat{\mathcal{H}}\psi(x,y,z) = E\psi(x,y,z)$$
$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(x,y,z)\right]\psi(x,y,z) = E\psi(x,y,z)$$

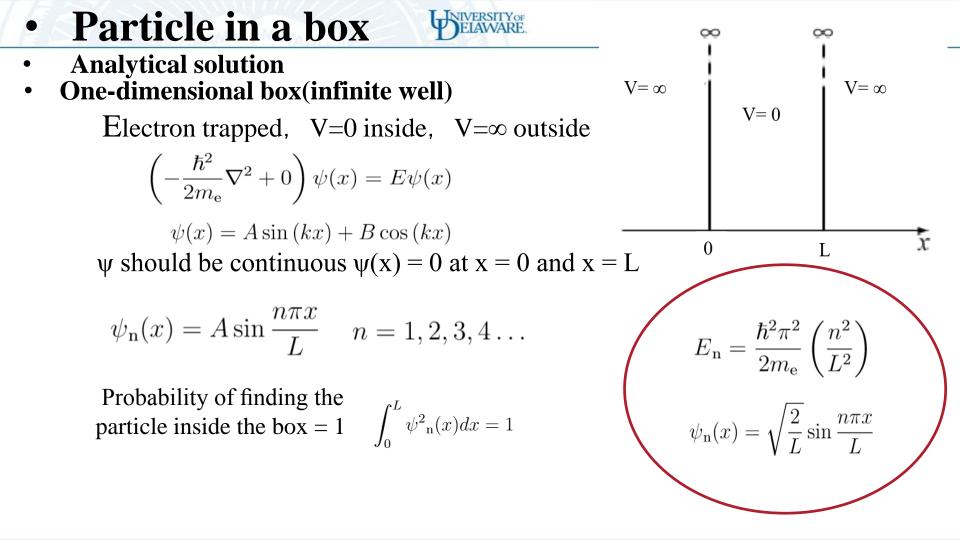
FLAWARE

- In COMSOL Multiphysics
 - Coefficient PDE form $\lambda^2 e_a \psi - \lambda d_a \psi + \nabla \cdot (-c \nabla \psi - \alpha \psi + \gamma) + \beta \cdot \nabla \psi + a \psi = f \quad \text{in } \Omega$

with $e_a = 0, d_a = 1, \alpha = 0, \gamma = 0, \beta = 0, f = 0$, we get,

$$\nabla \cdot (-c\nabla \psi) + a\psi = \lambda \psi$$

where $c = \frac{\hbar^2}{2m_{\text{eff}}}, \ \lambda = E, a = V$



- Particle in a box
 - Three-dimensional box

$$\left(-\frac{\hbar^2}{2m_{\rm e}}\nabla^2 + 0\right)\psi_{n_xn_yn_z}(x, y, z) = E_{n_xn_yn_z}\psi_{n_xn_yn_z}(x, y, z)$$

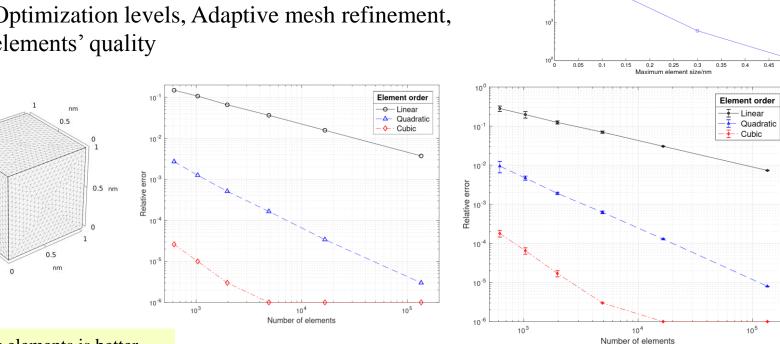
Similar to the case of one-dimensional

$$E_{\mathbf{n_x n_y n_z}} = \frac{\hbar^2 \pi^2}{2m_{\mathrm{e}}} \left[\left(\frac{n_{\mathrm{x}}}{L_{\mathrm{x}}}\right)^2 + \left(\frac{n_{\mathrm{y}}}{L_{\mathrm{y}}}\right)^2 + \left(\frac{n_{\mathrm{z}}}{L_{\mathrm{z}}}\right)^2 \right] \qquad \text{Lx=Ly=Lz=L}$$
$$\psi_{\mathbf{n_x n_y n_z}}(x, y, z) = \left(\frac{2}{L}\right)^{\frac{3}{2}} \sin \frac{n_{\mathrm{x}} \pi x}{L} \sin \frac{n_{\mathrm{y}} \pi y}{L} \sin \frac{n_{\mathrm{z}} \pi z}{L}$$

$$n_{\rm x} = 1, 2, 3, 4 \dots; n_{\rm y} = 1, 2, 3, 4 \dots; n_{\rm z} = 1, 2, 3, 4 \dots$$

COMSOL simulation

- Element (domain) type for 3D: tets, prisms... •
- Element order: linear,quadratic,cubic... ٠
- Element size parameters: $e_{\text{max}}, e_{\text{min}}, e_{\text{mgr}}, e_{\text{cf}} e_{\text{ronr}}$ ٠
- Optimization levels, Adaptive mesh refinement, • elements' quality



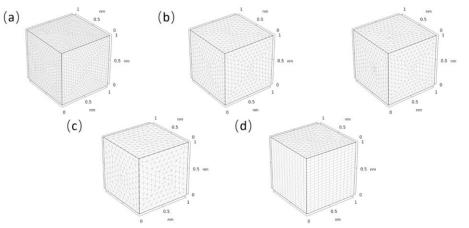
IVERSITYOF

Cubic elements is better than quadratic elements

Mesh convergence study for an electron in a 3D box for ground state and first excited state

Number of elements 10

- 1. Mesh1: Lagrange quadratic element, predefined "finer" mesh $(e_{\text{max}} = 0.055; e_{\text{min}} = 0.004; e_{\text{mgr}} = 1.4; e_{\text{cf}} = 0.4; e_{\text{ronr}} = 0.7)$, Optimization Level=High
- 2. Mesh2: Lagrange quadratic element, predefined "fine" mesh $(e_{\text{max}} = 0.055; e_{\text{min}} = 0.004; e_{\text{mgr}} = 1.4; e_{\text{cf}} = 0.4; e_{\text{ronr}} = 0.7)$, Optimization Level=High, with one defaulted adaptive mesh



3. Mesh3: Lagrange cubic element, predefined "normal" $mesh(e_{max} = 0.055; e_{min} = 0.004; e_{mgr} = 1.4; e_{cf} = 0.4; e_{ronr} = 0.7)$, Optimization Level=High

4. Mesh4: Lagrange cubic element, predefined "fine" mesh on top ($e_{\max} = 0.08; e_{\min} = 0.01; e_{\max} = 1.45; e_{cf} = 0.5; e_{ronr} = 0.6$), swept mesh distribution: the number of layers is 20, Optimization Level=High

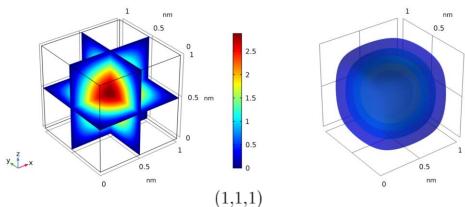
Mesh methods	DOF(domain elements)	ST	Relative error level
Mesh1	138354(100149)	82s	10 ⁻⁶ to 10 ⁻⁴
Mesh2	99183(32324)	513s	10^{-6} to 10^{-4}
Mesh3	77740(16485)	40s	0 to 10^{-5}
Mesh4	115168(8040)	85s	0 to 10^{-5}

Mesh3,Mesh4 are more efficient and accurate. Mesh4 gives high quality elements

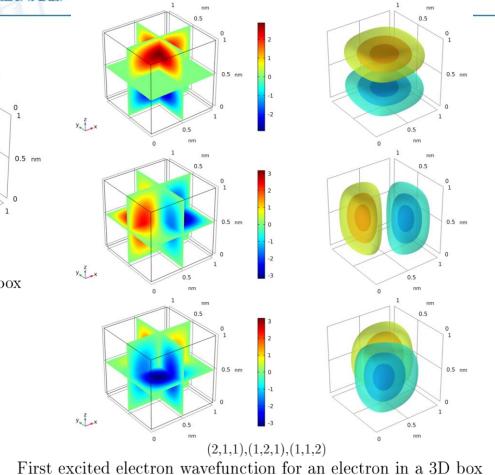
Comparison of Relative errors E_r of four mesh methods with respect to 14 distinct energy levels, all units of Relative errors are $10^{-5}[eV]$

$(n_{ m x},n_{ m y},n_{ m z})$	Deg.	E_{exact}	$E_{r \text{ mesh}1}$	$E_{r \text{ mesh}2}$	$E_{r \text{ mesh}3}$	$E_{r \text{ mesh}4}$
(1,1,1)	1	1.128090	0.266	0.800	0	0
(2,1,1),(1,2,1),(1,1,2)	3	2.256180	1.06	3.06	0.0443	0
(2,2,1),(2,1,2),(1,2,2)	3	3.384270	2.33	7.12	0.0886	0.0590
(3,1,1),(1,3,1),(1,1,3)	3	4.136331	3.36	9.11	0.121	0.0484
(2,2,2)	1	4.512361	4.17	13.4	0.177	0.199
(3,2,1),(3,1,2),(2,1,3),(2,3,1),(1,2,3),(1,3,2)	6	5.264421	5.57	16.3	0.285	0.152
(3,2,2),(2,3,2),(2,2,3)	3	6.392511	8.35	26.2	0.532	0.125
(4,1,1),(1,4,1),(1,1,4)	3	6.768541	8.89	22.1	0.576	0.369
(3,1,3),(3,3,1),(1,3,3)	3	7.144571	10.2	29.1	0.728	0.391
(4,2,1),(4,1,2),(1,4,2),(2,4,1),(1,2,4),(2,1,4)	6	7.896631	12.3	34.5	0.975	0.557
(3,3,2),(2,3,3),(3,2,3)	3	8.272661	14.0	43.5	1.16	0.338
(4,2,2),(2,4,2),(2,2,4)	3	9.024721	16.2	50.0	1.46	0.488
(4,3,1),(4,1,3),(3,1,4),(3,4,1),(1,3,4),(1,4,3)	6	9.776781	19.1	53.1	1.87	1.07
(5,1,1),(1,5,1),(1,1,5),(3,3,3)	4	10.15281	2.10	6.55	0.214	0.128

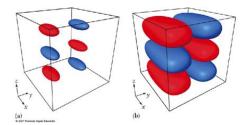
Mesh4:Accurate and efficient

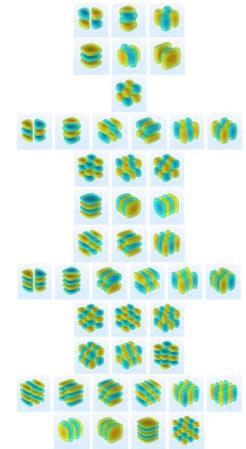


Ground state electron wavefunction for an electron in a 3D box



n=3 to n=10 electron wave functions for an electron in a 3D box





(2,2,1),(2,1,2),(1,2,2)
(3,1,1),(1,3,1),(1,1,3)
(2,2,2)
(3,2,1),(3,1,2),(2,1,3),(2,3,1),(1,2,3),(1,3,2)
(3,2,2),(2,3,2),(2,2,3)
(4,1,1),(1,4,1),(1,1,4)
(3,1,3),(3,3,1),(1,3,3)
(4,2,1),(4,1,2),(1,4,2),(2,4,1),(1,2,4),(2,1,4)
(3,3,2),(2,3,3),(3,2,3)
(4,2,2),(2,4,2),(2,2,4)
(4,3,1),(4,1,3),(3,1,4),(3,4,1),(1,3,4),(1,4,3)
(5,1,1),(1,5,1),(1,1,5),(3,3,3)

- Hydrogen atom
- Analytical solution $V_{\text{atom}} = -$

$$\left(-\frac{\hbar^2}{2m_{\rm e}}\nabla^2 + V\right)\psi(x, y, z) = E\psi(x, y, z)$$

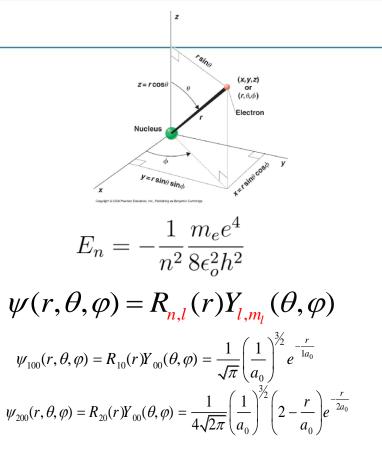
$$x = r\sin\theta\cos\varphi$$

$$x = r\sin\theta\cos\varphi$$

NIVERSITY OF

$$\psi(x, y, z) \to \psi(r, \theta, \varphi) \longrightarrow y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

$$\frac{1}{r^{2}}\left(\frac{\partial}{\partial r}r^{2}\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}\psi}{\partial\phi^{2}} + \frac{2m}{\hbar^{2}}\left(E + \frac{e^{2}}{4\pi\varepsilon_{0}r}\right)\psi = 0$$



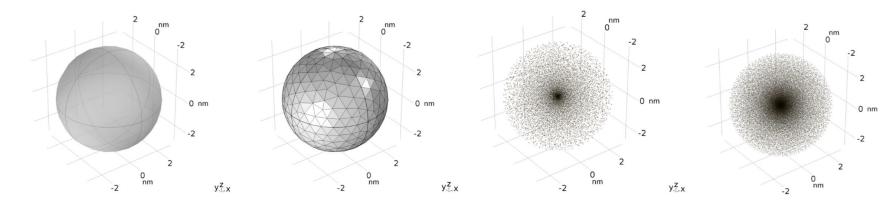
n = 1,2,3... $l = 0,1,2...(n-1), m_l = 0, \pm 1, \pm 2, ..., \pm l$

Analytical solution

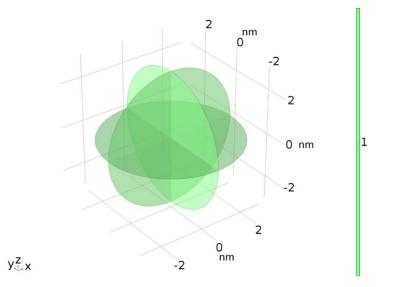
$a_o {=} 0.5292 \text{\AA}, e {=} 1.6022 \text{e-} 19 \text{[C]}, m_e {=} 9.1094 \text{e-} 31 \text{[kg]}, \epsilon_o {=} 8.8542 \text{e-} 12 \text{[F/m]}, h {=} 6.6261 \text{e-} 34 \text{[J} \cdot \text{s]}$							
(n,l,m)	R_{nl}	$Y_l^{m_l}$	ψ_{nlm_l}	$E_{n_{\text{exact}}}$			
(1, 0, 0)	$2\left(\frac{1}{a_o}\right)^{\frac{3}{2}}e^{-\frac{r}{a_o}}$	$\frac{1}{\sqrt{4\pi}}$	$\frac{1}{\sqrt{\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} e^{-\frac{r}{a_o}}$	-13.6062			
(2, 0, 0)	$\frac{1}{2\sqrt{2}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(2 - \frac{r}{a_o}\right) e^{-\frac{r}{2a_o}}$	$\frac{1}{\sqrt{4\pi}}$	$\frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(2 - \frac{r}{a_o}\right) e^{-\frac{r}{2a_o}}$	-3.4015			
(2,1,0)	$\frac{1}{2\sqrt{6}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(\frac{r}{a_o}\right) e^{-\frac{r}{2a_o}}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\cos(\theta)$	$\frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(\frac{r}{a_o}\right) e^{-\frac{r}{2a_o}} \cos(\theta)$	-3.4015			
$(2, 1, \pm 1)$	$\frac{1}{2\sqrt{6}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(\frac{r}{a_o}\right) e^{-\frac{r}{2a_o}}$	$\frac{\sqrt{3}}{2\sqrt{2\pi}}sin(\theta)e^{\pm i\phi}$	$\frac{1}{8\sqrt{\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(2 - \frac{r}{a_o}\right) e^{-\frac{r}{2a_o}} \sin(\theta) e^{\pm i\phi}$	-3.4015			

y^zx

COMSOL simulation



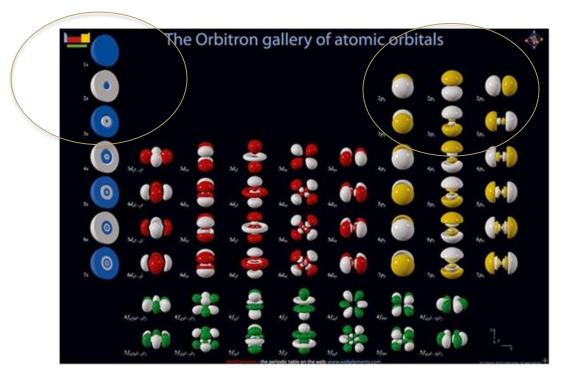
- Shrink elements with a scale factor 0.05
- No. of quadratic elements is much greater than No. of cubic elements
- Denser mesh for the core of hydrogen atom where the electron wave functions are localized



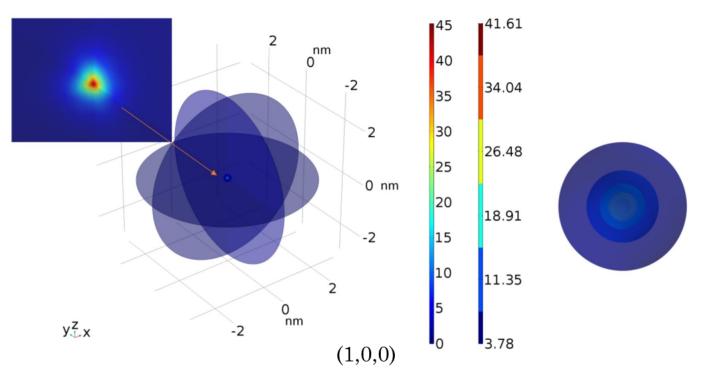
NIVERSITY OF

Normalization of wave functions for the hydrogen atom, the figure shows the integral of u^2 modulus square for the entire domain equals 1. there are no propability for an electron to go outside of this domain

• Compared with two existing hydrogen electron orbitals

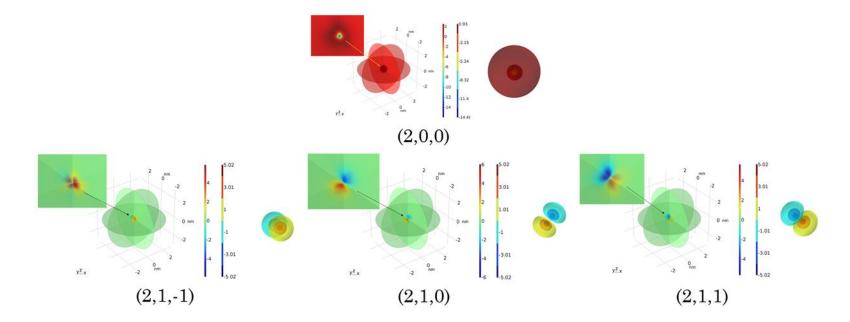


JIVERSITY OF



FILAWARE.

Ground state electron wavefunction of the hydrogen atom, quantum number:(n, l, m) = (1,0,0), there is one 1s orbital



NIVERSITYOF

AWARE

First excited state electron wavefunction of the hydrogen atom, quantum number: (n, l, m) = (2,0,0), (2,1,-1), (2,1,0), (2,1,1), there are one 2s orbital and three 2p orbitals

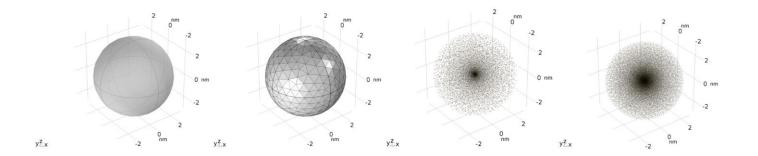


INIVERSITYOF

LAWARE

By using isosurface function with 6 levels in COMSOL, we can get the shape of wave functions as well as the associated values of these 6 levels. First excited state electron wavefunction of the hydrogen atom, quantum number:(n,l,m)=(2,0,0),(2,1,-1),(2,1,0),(2,1,1), there are one 3s orbital, three 3p orbitals and five 3d orbitals

•

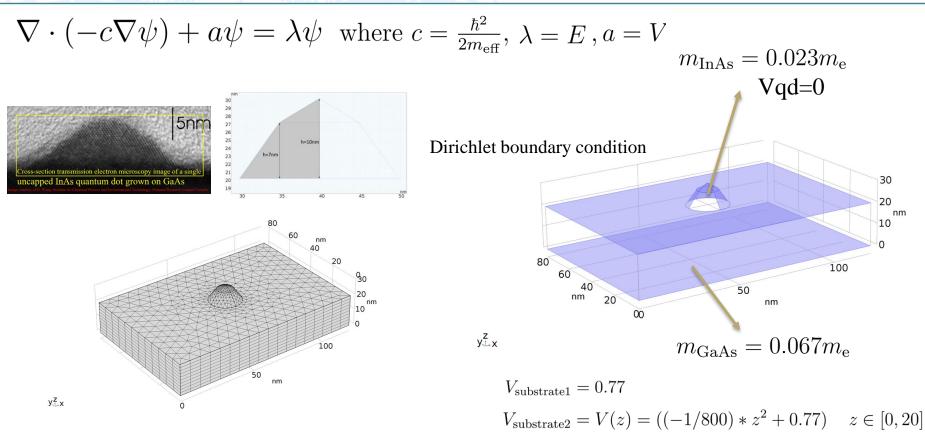


ELAWARE

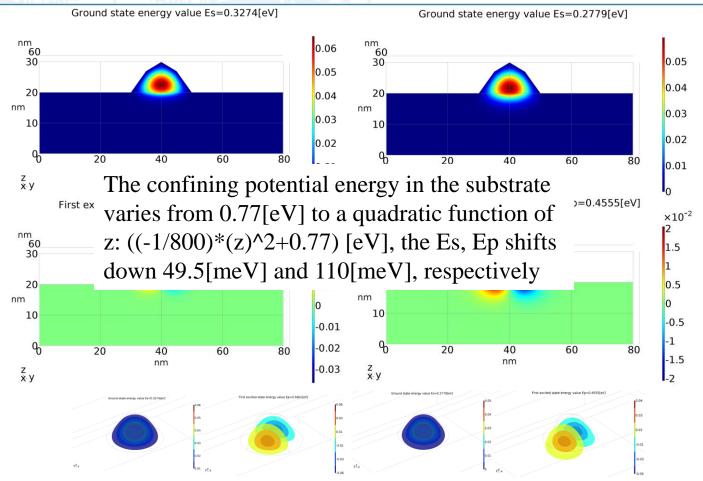
element orders	mesh expression	No.	DOF	$E_{(1,0,0)}$	$E_{(2,0,0)}$	$E_{(2,1,0)}$	$E_{(2,1,1)}$	$E_{(2,1,-1)}$
quadratic	$0.154 * sqrt(x^2 + y^2 + z^2) + 0.01$	106725	143684	-13.5805	-3.3980	-3.4011	-3.4011	-3.4011
cubic	$0.24 * sqrt(x^2 + y^2 + z^2) + 0.01$	31561	143540	-13.6077	-3.4017	-3.4015	-3.4015	-3.4015

Cubic elements are better

Self-assembled quantum dot



ELAWARE



Conclusion

- Mesh convergence study(different order elements, particle in a box problem)
- Validate "particle in a box" and "hydrogen atom" problems by comparing with its analytical solutions and 3D models.
- Efficient mesh method (mesh the domains where the electron localized with cubic, high quality elements)
- The confining potential of the substrate plays an important role in engineering electron energies as well as wave functions in QDs

