TECHNOLOGIES REALIZING TOMORROW'S TECHNOLOGY

Analysis of Burning Candle

COMSOL Conference
October 7-9, 2010

Candle Multiphysics

- Heat
- Conduction
- Radiation
- Convection
- Fluid flow
- Phase change
- Combustion

Simplifying assumptions

- Heat of combustion approximated by a simple heat source
- Stationary analysis
- Symmetric boundary conditions

Model set up

- Air flow is described by conservation of mass, momentum, and energy

$$
\begin{gathered}
\nabla \cdot(\rho \mathbf{u})=0 \\
\rho \mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nabla \cdot\left(\eta\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{\tau}\right)-\frac{2}{3} \eta(\nabla \cdot \mathbf{u}) \mathbf{I}\right)+\rho \mathbf{g} \\
\nabla \cdot(-k \nabla T)=Q-\rho c_{p} \mathbf{u}
\end{gathered}
$$

- Artificial diffusion added in plume

Model set up

- Conduction in the solid domains:

$$
\nabla \cdot(-k \nabla T)=Q
$$

- Anisotropic thermal conductivity
- Convective term added in fluid domains

Model set up

- Surface heat flux due to radiation

$$
q_{r}=\varepsilon\left(G_{m}+F_{a m b} \sigma T_{a m b}^{4}-\sigma T^{4}\right)
$$

- Mutual irradiation $\left(G_{m}\right)$ is a function of the radiosity

$$
J=(1-\varepsilon)\left(G_{m}+F_{a m b} \sigma T_{a m b}^{4}\right)+\Sigma \sigma T^{4}
$$

- Flame surface radiation is non-locally coupled to the radiating gas volume

Model set up

- Surface radiosity is a function of the average value of T^{4} in the radiating gas volume
- Heat flux q_{r} is set to zero at the boundary
- Source term is included in the flame region to account for cooling due to radiation

$$
Q=-\frac{\partial \sigma T^{4} A}{V}
$$

Model validation

- Temperature as function of position along wax surface
- Temperature as a function of candle height
- Location of interface between solid and liquid

Validation

S-L interface: 54 C Line: Measured Area: Predicted

	Measured (C)	FEA (C)
Full Candle	40	46
Half Candle	44	49

Results: Temperature @ Wax surface

Results: Temperature

Results: Wick location

Results: Flow

Summary

- Analysis incorporating
- Conduction
- Convection
- Radiation
- Phase change
- Validated model
- Effects of candle location/height
- Temperature distribution
- Flow

