

ß

Analysis of Burning Candle

COMSOL Conference

October 7-9, 2010

α

Candle Multiphysics

- Heat
 - Conduction
 - Radiation
 - Convection
- Fluid flow
- Phase change
- Combustion

Simplifying assumptions

- Heat of combustion approximated by a simple heat source
- Stationary analysis
- Symmetric boundary conditions

• Air flow is described by conservation of mass, momentum, and energy

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

$$\rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nabla \cdot \left(\eta \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) - \frac{2}{3} \eta (\nabla \cdot \mathbf{u}) \mathbf{I} \right) + \rho \mathbf{g}$$

$$\nabla \cdot \left(-k \nabla T \right) = Q - \rho c_p \mathbf{u}$$

• Artificial diffusion added in plume

• Conduction in the solid domains:

 $\nabla \cdot \left(- k \nabla T \right) = Q$

- Anisotropic thermal conductivity
- Convective term added in fluid domains

Surface heat flux due to radiation

$$q_{r} = \varepsilon \left(G_{m} + F_{amb} \sigma T_{amb}^{4} - \sigma T^{4} \right)$$

Mutual irradiation (G_m) is a function of the radiosity

$$J = (1 - \varepsilon) (G_m + F_{amb} \sigma T_{amb}^4) + \varepsilon \sigma T^4$$

• Flame surface radiation is non-locally coupled to the radiating gas volume

- Surface radiosity is a function of the average value of T⁴ in the radiating gas volume
- Heat flux q_r is set to zero at the boundary
- Source term is included in the flame region to account for cooling due to radiation

$$Q = -\frac{\varepsilon \sigma T^4 A}{V}$$

Model validation

- Temperature as function of position along wax surface
- Temperature as a function of candle height
- Location of interface between solid and liquid

Validation

Average temperature of glass along top outer edge

REALIZING TOMORROW'S TECHNOLOG

Results: Temperature @ Wax surface

Results: Temperature

Results: Wick location

Results: Flow

Summary

• Analysis incorporating

- Conduction
- Convection
- Radiation
- Phase change
- Validated model
- Effects of candle location/height
 - Temperature distribution
 - Flow

