

Modeling and Simulation of a Thermal Swing Adsorption Process for CO₂ Capture and Recovery

M. Lei, C. Vallières, G. Grévillot, M.A. Latifi

LRGP – CNRS – ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy CEDEX, France

> Temperature Swing Adsorption process

> 2D modeling

- Model equations
- Parameter estimability
- Parameter identification
- > Results for Adsorption step
- > Results for Regeneration step
- > Conclusions

TWO DIMENSIONAL MODEL

Model Assumptions

- The gaseous mixture obeys the perfect gas law
- Only CO_2 is adsorbed
- kinetics of mass transfer within a particle described by LDF model. The gas phase is in equilibrium with the adsorbent.
- \bullet Isosteric heat of adsorption (- ΔH) does not change with temperature.
- The adsorbent is considered as a homogeneous phase and the porosity of the bed is 0.4
- The physical properties of adsorbent are assumed as constant .

TWO DIMENSIONAL MODEL Model Equations

> Overall mass balance

$$\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} + \frac{v}{r} + \frac{1 - \varepsilon}{\varepsilon} \frac{RT}{P} \frac{\partial q_1}{\partial t} - \frac{1}{T} \left(u \frac{\partial T}{\partial z} + v \frac{\partial T}{\partial r} \right) - \frac{1}{T} \frac{\partial T}{\partial t} + \frac{1}{P} \left(u \frac{\partial P}{\partial z} + v \frac{\partial P}{\partial r} \right) + \frac{1}{P} \frac{\partial P}{\partial t} = 0$$

> <u>Mass balance for the adsorbed component (CO_2):</u>

$$\frac{\partial y_1}{\partial t} + (1 - y_1) \frac{1 - \varepsilon}{\varepsilon} \frac{RT}{P} \frac{\partial q_1}{\partial t} + u \frac{\partial y_1}{\partial z} + v \frac{\partial y_1}{\partial r} = \nabla (D \nabla y_1) + D \left[\frac{1}{P} \left(\frac{\partial y_1}{\partial z} \frac{\partial P}{\partial z} + \frac{\partial y_1}{\partial r} \frac{\partial P}{\partial r} \right) - \frac{1}{T} \left(\frac{\partial y_1}{\partial z} \frac{\partial T}{\partial z} + \frac{\partial y_1}{\partial r} \frac{\partial T}{\partial r} \right) \right]$$

<u>LDF Model</u> (Linear Driving Force)

$$\frac{\partial q_1}{\partial t} = k_1 (q_e - q_1)$$

TWO DIMENSIONAL MODEL Model Equations

> <u>Heat Balance</u>

$$\begin{split} C_{pg} \bigg(u \frac{\partial T}{\partial z} + v \frac{\partial T}{\partial r} \bigg) + \bigg[C_{pg} + \frac{1 - \varepsilon}{\varepsilon} \frac{RT}{P} \Big(\rho_s C_{ps} + q_1 C_{pg} \Big) \bigg] \frac{\partial T}{\partial t} \\ &= \nabla (\lambda \nabla T) - \frac{1 - \varepsilon}{\varepsilon} \frac{RT}{P} \frac{\partial q_1}{\partial t} \bigg(\Delta H + q_1 \frac{\partial \Delta H}{\partial q_1} \bigg) \end{split}$$

6

Momentum balance (Ergun's equation)

$$-\frac{\partial P}{\partial z} = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu_F u}{d_p^2} + 1.75 \frac{1-\varepsilon}{\varepsilon^3} \frac{\mu_F \sqrt{u^2 + v^2} u}{d_p}$$
$$-\frac{\partial P}{\partial r} = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu_F v}{d_p^2} + 1.75 \frac{1-\varepsilon}{\varepsilon^3} \frac{\mu_F \sqrt{u^2 + v^2} v}{d_p}$$

TWO DIMENSIONAL MODEL

Boundary conditions

	z = 0	z = L	r = 0	r = Rc
У ₁	$-D\frac{\partial y_1}{\partial z} = (y_{in} - y_1)u_{in}$	$\frac{\partial y_I}{\partial z} = 0$	$\frac{\partial y_1}{\partial r} = 0$	$\frac{\partial y_1}{\partial r} = 0$
u	$u = u_{in}$	$\frac{\partial u}{\partial z} = 0$	$\frac{\partial u}{\partial r} = 0$	$\frac{\partial u}{\partial r} = 0$
V	$\frac{\partial v}{\partial z} = 0$	$\frac{\partial v}{\partial z} = 0$	$\mathbf{v} = 0$	$\mathbf{v} = 0$
\mathbf{q}_1	$\frac{\partial q_1}{\partial z} = 0$	$\frac{\partial q_1}{\partial z} = 0$	$\frac{\partial q_1}{\partial r} = 0$	$\frac{\partial q_1}{\partial r} = 0$
Т	$\frac{\partial T}{\partial z} = 0$	$\frac{\partial T}{\partial z} = 0$	$\frac{\partial T}{\partial r} = 0$	$-\lambda \frac{\partial T}{\partial r} = kc(T - T_{out})$
Р	$\frac{\partial P}{\partial z} = 0$	$\mathbf{P} = \mathbf{P}_1$	$\frac{\partial P}{\partial r} = 0$	$\frac{\partial P}{\partial r} = 0$ 7

PARAMETER ESTIMABILITY

Parameters involved in the model :

for adsorption and regeneration steps: λ , k₁, D, k_c

Available experimental measurements :

for adsorption step : T (center of the column) and y_1 (exit of the column) for regeneration step : T (center of the column) and Q (exit of the column)

<u>Q1</u>: Do the available experimental measurements contain the necessary information to identify all the unknown parameters ?

<u>A1</u> : The general answer is NO.

<u>Q2</u>: Which parameters are then estimable from the available experimental measurements ?

A2. To answer the question we carried out a parameter estimability analysis.

PARAMETER ESTIMABILITY

Parameter estimability: matrix of sensitivities of the measured outputs with respect to different parameters involved in the model and at different sampling time

PARAMETER IDENTIFICATION

• NON estimable parameters are taken from literature

- ESTIMABLE parameters identified by NLP method
 - Objective function = least squares between model predictions and experimental measurements
 - Minimized within Matlab® using the gradient-based NLP solver « fmincon »

ADSORPTION STEP

Outputs of the model = CO_2 mole fraction at the exit and T at the center of the column.

Ranking		1	2	3	4		
Parameter		λ	\mathbf{k}_1	D	k _c		
Initial value		0.05	0.004	1.10^{-5}	15		
Norm		5.6417	1.5265	0.9516	0.2960		
Iteration	1	5.6417	1.5265	0.9516	0.2960		
	2	0	1.4735	0.9512	0.2680		
	3	0	0	0.8404	0.2655		
	4	0	0	0	0.2650		
Non estimable k _c : value fixed from literature to 10 W.m ⁻² K ⁻¹							

ADSORPTION STEP

Breakthrough curves

ADSORPTION STEP

Temperature profiles at the center of the column

REGENERATION STEP

Outputs of the model = outlet gas flow rates (Q) and T at the center of the column.

Ranking		1	2	3	4
Parameter		λ	k_1	k _c	D
Initial value		0.0228	0.0027	16.605	$2.89.10^{-5}$
Norm		1.855	0.5490	0.188	0.0038
Iteration	1	1.855	0.783	0.411	0.0038
	2	0	0.549	0.406	0.0039
	3	0	0	0.188	0.0038
	4	0	0	0	0.0038

Non estimable k_c : value fixed from literature to 10 W.m⁻²K⁻¹

D : value fixed from literature to 2.10⁻⁵ m².s⁻¹

REGENERATION STEP

REGENERATION STEP

Temperature profiles (center of the column)

CONCLUSIONS

- 2D non isothermal model developed to simulate a TSA process
 - temperature and concentration for adsorption step
 - temperature and flow rate for regeneration step
- Estimability analysis carried out
- Parameters identification from
 - T and CO_2 concentration for adsorption step
 - T and gas flow rate for regeneration step
- Good agreement with the experimental measurements in both adsorption and regeneration steps .

Thank you for your attention