MODELING OF MAGNETOELECTRIC EFFECTS IN MAGNETOSTRICTIVE / PIEZOELECTRIC MULTILAYERS USING A MULTIPHYSICS SIMULATOR.

F. Rasoanoavy¹ , V. Laur¹, R. Smaali² , P. Queffelec¹

¹University of Brest – CNRS, UMR 3192 Lab-STICC, ISSTB, 6 av. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France. ²Clermont Université, Univesité Blaise Pascal, Lasmea, BP 10448, F-63000 Clermont-Ferrand 2- CNRS, UMR 6602, LASMEA, F63177

> 17-18-19 Novmeber 2010 Comsol conference

F. Rasoanoavy

- Context
- Magnetoelectric effect
- o Theoritical aspects
- Static modeling of magnetoelectric structures
- RF simulations of magnetoelectric structures
- Conclusion and prospects

- Context
- Magnetoelectric effect
- o Theoritical aspects
- Static modeling of magnetoelectric structures
- RF simulations of magnetoelectric structures
- Conclusion and prospects

Wireless technology development / emerging services

Compact and low cost tunable systems

Context

- Use of ferroelectric layers :
 - © Electrical biasing
 - $\ensuremath{\boxdot}$ Impedance mismatch (high ε) & Loss Tanδ>10⁻²
- Use of ferromagnetic layers :
 - \odot Significant variations of μ under a weak bias field (max 250 Oe)
 - ⊗ Application of an external DC magnetic field (coils integration)

- Δ H₀ = 2500e Fr:1,8 \rightarrow 2,1GHz
- \rightarrow Δ F/F = 19 %

Association of piezoelectric and magnetostrictive materials

- $\ensuremath{\textcircled{\odot}}$ high tunability of ferromagnetic materials
- $\ensuremath{\textcircled{}}$ enable an electrical biasing
- $\ensuremath{\textcircled{}}$ low losses compared with ferroelectrics

- Context
- Magnetoelectric effect
- o Theoritical aspects
- Static modeling of magnetoelectric structures
- RF structures of magnetoelectric structures
- Conclusion and prospects

- Context
- Magnetoelectric effect
- Theoritical aspects
- Static modeling of magnetoelectric structures
- RF simulations of magnetoelectric structures
- Conclusion and prospects

Theoritical aspects

Maxwell and Callen's relationships for an « electro-magneto-mechanics » system give us:

CINIS

Theoritical aspects

« X » Model Already integrated in Comsol Multiphysics

« X » Model Developed and Implemented in Comsol Multiphysics (at the Lab-STICC)

- Context
- Magnetoelectric effect
- o Theoritical aspects
- Static modeling of magnetoelectric structures
- RF simulations of magnetoelectric structures
- Conclusion and prospects

Validation of piezoelectric model : Comparison between experimental and Comsol-based deflections of a PVDF cantilever

Validation of the developed magnetostrictive model

Good agreement between experimental and Comsol-based deflections

Lab-STICC

Modeling of a trilayer magnetoelectric structure

Decrease of the permeability (~30%) under an electric field of 1,5MV/m, corresponding with the calculated of the magnitude field induced using static magnetoelectric model

Modeling of a multilayer {piezoelectric/magnetostrictive}x5 structure

Modeling of a multilayer {piezoelectric/magnetostrictive}x5 structure

© Stronger interaction with RF field (compared with a single magnetic layer)

☺ Technologically complicated

Mulitlayer composite driven by a piezoelectric actuator (electric field bias)

Uniaxial piezoelectric actuators for microwave tunable applications

© The stress induced by the application of electric field leads to an induced magnetic field about of 25Oe in the multilayer

© Low DC bias Voltage

© Easy integration in RF circuit

Weak strain induced at interface
{ Multilayer / piezoelectric actuator }
(compared with biaxial structure)

Biaxial piezoelectric actuators for microwave tunable applications

Biaxial piezoelectric actuators for microwave tunable applications

- Context
- Magnetoelectric effect
- o Theoritical aspects
- Static modeling of magnetoelectric structures
- RF simulations of magnetoelectric structures
- Conclusion and prospects

RF simulations of magnetoelectric structures

Magnetoelectric tunable microstrip line

Context

- Magnetoelectric effect
- Theoritical aspects
- Static modeling of magnetoelectric structures
- RF structures of magnetoelectric structures
- Conclusion and prospects

Conclusion

Development of a magnetostriction, and magnetoelectric specific models using Comsol Multiphysics

- > Capacity to determine:
- the total displacement of the actuator
- the stress induced in the ferromagnetic layer
- the voltage induced magnetic field in the ferromagnetic layers

- Development of a RF tunable magnetoelectric model:
 - simulation of a tunable microstrip line based on {ferromagnetic/PVDF} multilayers driven by an electric field

Prospects

- Future use of Comsol:
- design of new magnetoelectric tunable RF functions
- implementation of the free energy model (rotation of the magnetization)
- implementation micromagnetic simulations (domains wall movements)

Thank You for Your Attention

