

#### A Model of Gas Bubble Growth by Comsol Multiphysics

Bruno Chinè<sup>1,2</sup>, Michele Monno<sup>1,3</sup>

<sup>1</sup> Laboratorio MUSP, Piacenza, Italy; <sup>2</sup> ITCR, Cartago, Costa Rica; <sup>3</sup> Politecnico di Milano, Italy

bruno.chine@musp.it









## **Outline of the presentation**

- Introduction
- Metal foams and bubbles growth
- Bubble growth model
- Simulations by Comsol Multiphysics
- Results
- Conclusions

Comsol Conference 2010, Paris



## **Metal foams**

Uniform gas-liquid mixture (gas-metal or gas-alloy) in which the volume fraction of the liquid phase is small (10-20%: wet foam, <10% dry foam)

**D.J. Durian** (UCLA): ...*a random packing of bubbles*... or ...*a most unusual form of condensed matter...* 

#### solidification



Comsol Conference 2010, Paris



solidified metal foam







#### **Process and bubble growth**

- mixing of the foaming agent powder to obtain a uniform distribution in the base metal powder
- powder cold compaction in order to break the oxide layer covering the aluminium particle
- extrusion of the pre-compacted billet in order to obtain a precursor material whose density is close to that of the base metal



#### Shaped mould

#### Shaped container



Foamed

component

Shaped mold

Furnace

Extruded alloy bar or plate (containing foaming agent)

# **Process and bubble growth**

- chopping of the precursor material in small pieces
- placing inside a sealed split mould
- heating to a temperature a little above the solidus temperature of the alloy
- foaming agent decomposition and foam formation
- cooling and extraction



Comsol Conference 2010, Paris



Comsol Conference 2010, Paris



## A bubble growth model

At the beginning, simplified models may be used to study metal foaming processes.

- transient bubble growth in a 2D region, circular symmetry
- isothermal, no mass diffusion: growth is \_ only driven by a pressure difference, surface tension σ effects are considered
- gas follows the ideal gas law  $pV = n\Re T$ , liquid is incompressible
- gas and liquid are immiscible





$$R_{0} = \frac{\sigma}{p_{G,0} - p_{EXT,0}} \qquad t = 0, \text{ equilibrium}$$
$$R_{eq} = \frac{\sigma}{p_{G} - p_{EXT}} \qquad t = t \text{ fin, equilibrium}$$

**Comsol Multiphysics:** 

# Two Phase Flow, Level Set Application Mode Weakly-Compressible

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$  continuity

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot [-p\mathbf{I} + \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - (\frac{2\eta}{3} - \kappa_{DV})(\nabla \cdot \mathbf{u})\mathbf{I}] + \mathbf{F} + \rho \mathbf{g} + \mathbf{F}_{ST}$$

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \gamma \nabla \cdot [\varepsilon \nabla \phi - \phi(1 - \phi) \frac{\nabla \phi}{|\nabla \phi|}] \quad \text{level set}$$

#### A bubble growth model



Comsol Conference 2010, Paris



#### A bubble growth model

#### equations for gas density

$$- \underline{\text{if } \sigma = 0}: \quad \rho_G(t) = \frac{\rho_{G,0}}{(1 + \frac{p_{G,0} t}{\eta_L})}$$

- <u>if σ≠0</u>:

$$[C - AR(t)]^C \exp^{AR(t)} = [C - AR_0]^C \exp^{A(R_0 - At)}$$
$$C = \frac{p_{G,0}R_0^2}{2\eta_L}, \quad A = \frac{\sigma}{2\eta_L} \quad \Longrightarrow \quad \rho_G(t)$$



Comsol Conference 2010, Paris



## **Simulations: properties and parameters**

| -             |                                      |               |                                     |
|---------------|--------------------------------------|---------------|-------------------------------------|
|               | Magnitude                            | Symbol        | Value                               |
|               | Universal gas                        |               | 8.314 J/(mol·K)                     |
|               | constant                             |               |                                     |
|               | Gas molar mass                       | М             | 2 g/mol                             |
| -•            | Gas density                          | $ ho_G$       | ideal gas law                       |
| -•            | Liquid density                       | $ ho_L$       | 10 kg/m <sup>3</sup>                |
|               | Gas viscosity                        | $\eta_G$      | $10^{-3}  \text{Pa} \cdot \text{s}$ |
|               | Liquid viscosity                     | $\eta_L$      | 10 <sup>-1</sup> Pa⋅s •             |
|               | Gas bulk viscosity                   | $\kappa_{DV}$ | 0 Pa·s                              |
|               | ~ ^ ·                                |               |                                     |
|               | Surface tension                      | $\sigma$      | 0 N/m                               |
|               | coefficient                          |               | 10 <sup>2</sup> N/m                 |
|               | Initial bubble                       | $R_0$         | 10 <sup>-2</sup> m                  |
|               | radius                               | -             |                                     |
|               | Initial bubble                       | $p_{G,0}$     | 0.2 Pa                              |
|               | pressure                             |               | 1.2 Pa; 2.2 Pa                      |
|               | Ambient pressure                     | $p_{EXT}$     | 0 Pa                                |
|               | Constant                             | Т             | 933 K                               |
|               | temperature                          |               |                                     |
|               | $\rho_{I}$ $10^{2}$                  |               | $\eta_{I}$                          |
| $\rightarrow$ | $\frac{1}{\rho_{ab}} \cong 4x10^{2}$ |               | $\frac{n}{n} \cong 10^2 \Leftarrow$ |
|               | <b>r</b> G,0                         |               | <b>'</b> <i>IG</i>                  |

| Magnitude                    | Symbol | Value              |
|------------------------------|--------|--------------------|
| Max element size of the mesh | -      | 10 <sup>-4</sup> m |
| Time stepping                | -      | set by the solver  |
| Relative tolerance           | -      | 10 <sup>-3</sup> s |
| Absolute tolerance           | -      | 10 <sup>-4</sup> s |
| Interface thickness          | З      | 10 <sup>-4</sup> m |
| Reinitialization             | γ      | 0.01 - 0.02 m/s    |

mesh:10<sup>4</sup> triangle elements

 $8x10^4$  DOF

Direct solver PARDISO (*Comsol Multiphysics* 3.5*a*) step size  $\approx 10^{-3} s$ , solution time  $\approx 10^{2} \min(f(t_{fin}))$ 

Comsol Conference 2010, Paris



#### Results



Comsol Conference 2010, Paris



#### **Results**



Comsol Conference 2010, Paris



## Results

#### pressure and velocity contours





## Conclusions

- A Comsol Multiphysics model simulates bubble growth with flow in gas and liquid regions. Gas pressure drives the expansion.
- A weakly-compressible model, coupled to a level set equation, allows to capture the interface. The gas is ideal and surface tension effects are present.
- The model takes into account moderate density and viscosity differences values for the fluids, but it could represent a basis for successive realistic simulations of foam expansions.
- In this sense, for a future work:
  - accurate and larger transient at the beginning of the growth phenomena, together with a denser mesh on interface will be required
  - mass diffusion and heat transfer will be added to the model.

Comsol Conference 2010, Paris



#### References

- J. Banhart, Manufacture, characterization and application of cellular metals and metal ٠ foams, Progress in Materials Science, 46, 559-632 (2001).
- S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: Algorithms ٠ based on Hamilton-Jacobi formulation, *Journal of Computational Physics*, **79**, 12-49 (1988). Comsol AB, Comsol Multiphysics-Chemical Engineering Module, *User's Guide*, **Version 3.5**
- ٠ **a** (2008).
- J. Bruchón, A. Fortin, M. Bousmina and K. Benmoussa, Direct 2D simulation of small gas • bubble clusters: From the expansion step to the equilibrium state, *International Journal for Numerical Methods in Fluids*, **54**, 73-101 (2007).



# Many thanks for your attention.

# Thanks also to the organizers of



Comsol Conference 2010, Paris