

A Transient Unified Model of Arc Weld Pool Couplings during Spot GTA Welding

A. TRAIDIA, and F. Roger

ENSTA-Paristech & AREVA NP, FRANCE

COMSOL Conference, Boston 2010

Introduction

Gas Tungsten Arc Welding – Tungsten Inert Gas

A highly coupled multiphysics problem

State of art – Towards a unified formulation

Toward a unified model

Mathematical formulation

Inside the cathode, plasma, and anode

$$\begin{aligned}
\nabla \cdot \left(\sigma \nabla V + \sigma \frac{\partial \vec{A}}{\partial t}\right) &= 0 \\
\sigma \frac{\partial \vec{A}}{\partial t} + \nabla \times \left(\frac{1}{\mu_0} \nabla \times \vec{A}\right) + \sigma \nabla V &= \vec{0}
\end{aligned}$$

$$\begin{aligned}
\nabla \cdot \vec{v} &= 0 \\
\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v}\right) &= -\nabla p + \mu \nabla \cdot (\nabla \vec{v} + t \nabla \vec{v}) \\
+ \vec{j} \times \vec{B} + \rho_0 \vec{g} + w_p \rho_0 \beta (T - T_{ref}) \vec{g} \\
\rho C_p^{eq} \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T\right) &= \nabla \cdot (\lambda \nabla T) + \vec{j} \cdot \vec{E} \\
+ \frac{5k_B}{2e} \vec{j} \cdot \nabla T - (1 - w_p) \cdot 4\pi\epsilon_N
\end{aligned}$$

$$\begin{aligned}
P_a - \lambda - \rho g \varphi &= -\gamma \frac{r \varphi_{rr} + \varphi_r (1 + \varphi_r^2)}{r(1 + \varphi_r^2)^{\frac{3}{2}}} \\
\lambda + \rho g(L + \psi) &= -\gamma \frac{r \psi_{rr} + \psi_r (1 + \psi_r^2)}{r(1 + \psi_r^2)^{\frac{3}{2}}}
\end{aligned}$$

$$\begin{aligned}
\text{Main boundary conditions} \\
\text{Plasma-cathode interface} \\
[-k \nabla T \cdot (-\vec{n})]_{anode} - [-k \nabla T \cdot (-\vec{n})]_{plasma} &= j[\vec{j} \cdot \vec{n}] \phi_a - \epsilon \sigma_B T^4 \\
\mu \frac{\partial (\vec{v} \cdot \vec{s})}{\partial \vec{n}} &= \vec{\tau}_a + f_L \frac{\partial \gamma}{\partial T} \frac{\partial T}{\partial \vec{s}} \\
\frac{\partial \gamma}{\partial T} &= -A_r - R_s \Gamma_s \ln(1 + Ka_s) - \frac{Ka_s}{1 + Ka_s} \Gamma_s \frac{\Delta H_o}{T} \\
K(T) &= k_s \exp\left(-\frac{\Delta H_o}{R_s T}\right) \\
\end{aligned}$$

$$\begin{aligned}
P_a - \lambda - \rho g \varphi &= -\gamma \frac{r \psi_{rr} + \psi_r (1 + \psi_r^2)}{r(1 + \psi_r^2)^{\frac{3}{2}}} \\
\lambda + \rho g(L + \psi) &= -\gamma \frac{r \psi_{rr} + \psi_r (1 + \psi_r^2)}{r(1 + \psi_r^2)^{\frac{3}{2}}} \\
\end{aligned}$$

$$\begin{aligned}
\text{Main boundary conditions} \\
\end{aligned}$$

Results Application to pulsed current welding

80/160 A- 1 Hz α 60°- h 3 mm

Results Application to pulsed current welding

80/160 A- 1 Hz α 60°- h 3 mm

Fully penetrated weld pool

Solutions at t=4.5 s and t=5 s

Free surfaces shape at different times

Experimental validation

Experimental procedure

Observation of the weld pool using an IR camera

Experimenal width of the weld pool

Matlab image processing algorithm

ENSTA ParisTech

Experimental validation

Validation

Thank you for your attention,

Any questions ?

• Appendix B Application to pulsed current welding

80/160 A- 1 Hz α 60°- h 3 mm

ENSTA ParisTech