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Abstract: Synthetic conductors show a 
phenomenon of periodic aggregation of 
electrons that is known as Electronic Crystals 
(EC). A common form of EC is the Charge 
Density Wave (CDW) with its spectral gap 2Δ, 
which determines optical and electronic 
properties of the materials. A recent technique 
of nano-scale junctions – Fig.2, fabricated by 
focused ion beams reveals a surprising feature 
in the tunneling spectra: the threshold gap 
which is ten times smaller than 2Δ, and 
followed by sequences of peaks appearing at 
higher voltages [1]. We witness the 
reconstruction of the electronic state under the 
applied field by proliferations of dislocations – 
CDW vortices. COMSOL allowed us to model 
the appearance of these patterns both in 
stationary states and in transient dynamics. 
This challenging problem requires solving 
multi-field nonlinear partial differential 
equations in 2+1 space-time dimensions. The 
variables are the two components of the CDW 
complex order parameter, the electric potential, 
and – for the liquid part of the electrons: the 
concentration, the current and the chemical 
potential. 
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1. Introduction 
 

The charge density wave (CDW) is a kind 
of electronic crystal [2] which phase transition 
is formed spontaneously by electron—lattice 
interaction through the symmetry breaking, 
thus forming a volatile state which can be 
locally affected by electrons’ injection. Under 
an applied electric field in a constraint 
geometry, the CDW will experience stress 
which is resolved by the ground state 
reconstruction, and these processes go via 
creation of topological defects like solitons and 
dislocations—the CDW vortices [3,4] Fig. 1. 
In this article, we present a model of internal 
reconstruction in the CDW junction. We take 
into account multiple fields in mutual 
nonlinear interactions: the phase and the 

amplitude of the CDW order parameter, 
distributions of the electric potential, of the 
density and the current of normal carriers. The 
dissipative equations have been solved 
numerically by the time-dependent solver of 
COMSOL Multiphysics 3.5a. With a finite 
element method, we could successively handle 
the complex real shape of the junction in two 
spatial dimensions. Furthermore, the 
COMSOL code offers an easy and efficient 
implementation of the model consisting of four 
coupled strongly nonlinear partial differential 
equations. The numerical work was performed 
for parameters close to experiments on the 
inter-layer tunneling in NbSe3 [1].     

        
Figure 1. STM image illustrating the periodic 
modulation of electronic density for CDW in NbSe3 
[5]. Arrow points to the topological defect, where 
the CDW amplitude passes zero and the phase 
winds by 2π, which is the subject studied in this 
paper. 

We have accessed the dynamical behavior 
of the penetrating vortices into the CDW and 
illustrated their final pattern formation. The 
numerical results correspond well to the 
experimental observations.  
 
2. Model  
 
      Charge density wave exists in many quasi-
one dimensional materials. Under the CDW 
transition temperature, the electrons 
condensate to form CDW chains, see Fig. 1. It 
is a self-consistent periodic deformation of 
both the electronic density and lattice 
distortion, which is nearly sinusoidal ~ 
Acos(Qx+φ).  Hence, it can be described by 
the complex order parameter Ψ=Aeiφ given by 
the amplitude A, which is proportional to the 
energy gap Δ, and the phase φ. Working with 
the complex field Ψ allows us to study the 



formation of topological defects like 
vortices—the ICDW dislocations. The phase φ 
characterizes the ground state degeneracy, 
while its distortions form the collective mode. 
Phase increment by 2π adds one CDW period 
thus concentrating the charge 2e, and therefore 
the charge density (per chain unit length) is 
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phase gradient alone the chain direction X.  
      The model should deal with intricate 
distributions of the order parameter Ψ, electric 
potential Ф, the normal charge density n and 
the normal current j.  
      We use the time-dependent dissipative 
Ginsburg-Landau approach to describe the 
dynamics of the CDW system. The static state 
is determined by a minimization of the total 
energy functional Htotal = HCDW (Ψ) + Hel (Φ). 
The CDW free energy HCDW can be written as: 
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Here Δ is the CDW gap, ξ is the correlation 
length ξ=ћvF/Δ, s is the unite area per chain, vF 
is Fermi velocity of the parent metal. The first 
two terms give the energy of elastic 
deformation: compression and shear; β~0.1 is 
the parameter of the structural anisotropy. The 
third term is the CDW ground state energy, 
with a minimum at |Ψ|=1, with Ψ normalized 
to its equilibrium value. 
      The model also considers the local 
Coulomb interactions, which become very 
important since charges are concentrated near 
the vortex cores. Hel describes the effect of the 
local electric field, and of the free carriers with 
density n: 
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where potential Ф is assumed to incorporate 
the one-electron charge e > 0. 
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is the local density per area in the single plane 
(n0 is its unperturbed value at T=0 and ζ=0), da 
is the inter-plane distance and ε~10 is the host 
dielectric constant. The first and the second 
terms in (2) give the interaction of the 
collective and the normal charges with the 
electric field, the third terms is the field 
energy. The last term F(n) is the free energy of 
carriers giving the definition of the local 
chemical potential ζ=∂F/∂n. 

       The system evolution is governed by 
dissipative equations of the order parameters: 
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and the Poison equation for the electric 
potential Φ, 
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Here  γA,φ are the damping coefficients and can 
be executed from independent experimental 
measurement γφ~108 energy/(m3·second). The 
relaxation time for the amplitude A is much 
shorter than the for the phase φ, then we can 
approximately put ߛ஺ ൎ 0, so that the energy is 
always minimum with respect to A.   
      The equations have to be completed by the 
diffusion equation for normal carriers n: 
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with ߪො the anisotropic conductivity tensor, 
which is taken to be proportional to the 
carriers’ concentration n. The conductivity 
along the CDW chain direction can be 100 
times larger than that along the other 
directions. 
      The boundary conditions reflect the 
following properties: 

1. CDW stress vanishes at all boundaries 
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2. Normal electric field is zero at all 
boundaries meaning the total electro-
neutrality and the confinement of the 
electric potential within the sample: 
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3. No normal current flow through the 
boundaries such thatെߪො

௡

௡బ
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Φሻ ൌ 0, except for the two 
source/drain boundaries left for the 
applied voltage. There, the chemical 
potentials are applied: ߞ ൅ Φ ൌ േܸ. 

       In the above equations ݔറ is the unit vector 
along the chain axis, ߥറ is the outward unit 
normal vector on the domain.  
 
3. Numerical Method  
 

 The geometry design of our model based 
on the real experimental junction is shown in 
Fig. 2 with two overlapping cuts across the 
sample. The junction made from CDW 
material is of high isotropic conductivity, 
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We have performed a program of modeling 
the stationary states and their transient 
dynamic for the CDW in restricted geometry 
junction by COMSOL. We used COMSOL to 
study the microscopic properties of electronic 
correlated materials, and our results give 
access to stationary and transient processes at 
nano-scale in space and pico-second scale in 
time. 

Spontaneous vortex formation is observed 
above a critical value for the applied voltage. 
The critical voltage is identified as the 
dislocation line entry energy, in some analogy 
to the HC1 field in superconductivity. A sharp 
drop of the electric potential across the vortex 
cores can lead to enhanced inter-layer 
tunneling, which explains the observed peaks 
in experimental tunneling spectra.  

The studies of reconstruction in junction 
for the CDW vortex state can be relevant to 
modern efforts of the field-effect 
transformation in strongly correlated materials 
that also show a spontaneous symmetry 
breaking.   
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