Modeling of Nonlinear and Non-stationary Multi-vortex
Behavior of Electronic Crystals in Restricted Geometries of
Nano Junctions

Tianyou Yi, Yulang Luo and Serguei Brazovskii
LPTMS-CNRS UMR 8628, Université Paris-Sud bat. 100 F-91405 Orsay, France
Corresponding author: T. Yi, email address: tianyou.yi@Ilptms.u-psud.fr

Abstract: Synthetic conductors show a
phenomenon of periodic aggregation of
electrons that is known as Electronic Crystals
(EC). A common form of EC is the Charge
Density Wave (CDW) with its spectral gap 2A,
which determines optical and electronic
properties of the materials. A recent technique
of nano-scale junctions — Fig.2, fabricated by
focused ion beams reveals a surprising feature
in the tunneling spectra: the threshold gap
which is ten times smaller than 2A, and
followed by sequences of peaks appearing at
higher voltages [1]. We witness the
reconstruction of the electronic state under the
applied field by proliferations of dislocations —
CDW vortices. COMSOL allowed us to model
the appearance of these patterns both in
stationary states and in transient dynamics.
This challenging problem requires solving
multi-field nonlinear partial  differential
equations in 2+1 space-time dimensions. The
variables are the two components of the CDW
complex order parameter, the electric potential,
and — for the liquid part of the electrons: the
concentration, the current and the chemical
potential.
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1. Introduction

The charge density wave (CDW) is a kind
of electronic crystal [2] which phase transition
is formed spontaneously by electron—Iattice
interaction through the symmetry breaking,
thus forming a volatile state which can be
locally affected by electrons’ injection. Under
an applied electric field in a constraint
geometry, the CDW will experience stress
which is resolved by the ground state
reconstruction, and these processes go via
creation of topological defects like solitons and
dislocations—the CDW vortices [3,4] Fig. 1.
In this article, we present a model of internal
reconstruction in the CDW junction. We take
into account multiple fields in mutual
nonlinear interactions: the phase and the

amplitude of the CDW order parameter,
distributions of the electric potential, of the
density and the current of normal carriers. The
dissipative equations have been solved
numerically by the time-dependent solver of
COMSOL Multiphysics 3.5a. With a finite
element method, we could successively handle
the complex real shape of the junction in two
spatial  dimensions.  Furthermore,  the

COMSOL code offers an easy and efficient
implementation of the model consisting of four
coupled strongly nonlinear partial differential
equations. The numerical work was performed
for parameters close to experiments on the
inter-layer tunelig in NbSe3 [1].
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Figure 1. STM image illustrating the periodic
modulation of electronic density for CDW in NbSe;
[5]. Arrow points to the topological defect, where
the CDW amplitude passes zero and the phase
winds by 2z, which is the subject studied in this
paper.

We have accessed the dynamical behavior
of the penetrating vortices into the CDW and
illustrated their final pattern formation. The
numerical results correspond well to the
experimental observations.

2. Model

Charge density wave exists in many quasi-
one dimensional materials. Under the CDW
transition  temperature, the  electrons
condensate to form CDW chains, see Fig. 1. It
is a self-consistent periodic deformation of
both the electronic density and lattice
distortion, which is nearly sinusoidal -~
Acos(Qx+). Hence, it can be described by
the complex order parameter ¥=Ae' given by
the amplitude A, which is proportional to the
energy gap A, and the phase ¢. Working with
the complex field ¥ allows us to study the



formation of topological defects like
vortices—the ICDW dislocations. The phase ¢
characterizes the ground state degeneracy,
while its distortions form the collective mode.
Phase increment by 2z adds one CDW period
thus concentrating the charge 2e, and therefore
the charge density (per chain unit length) is

Nepw =%A2(p', with ¢’ = d,¢ being the
phase gradient alone the chain direction X.

The model should deal with intricate
distributions of the order parameter ¥, electric
potential @, the normal charge density n and
the normal current j.

We use the time-dependent dissipative
Ginsburg-Landau approach to describe the
dynamics of the CDW system. The static state
is determined by a minimization of the total
energy functional Hyye = Hepw () + He ().
The CDW free energy Hepw can be written as:

A
Hepw = fdr3 {4—7fs(|axtp|2 +p)0,%|")
A pppnd?E 1
+ o5 1PI G, )}. (0

Here A is the CDW gap, & is the correlation
length &=hve/A, s is the unite area per chain, ve
is Fermi velocity of the parent metal. The first
two terms give the energy of elastic
deformation: compression and shear; $~0.1 is
the parameter of the structural anisotropy. The
third term is the CDW ground state energy,
with a minimum at [¥|=1, with ¥ normalized
to its equilibrium value.

The model also considers the local
Coulomb interactions, which become very
important since charges are concentrated near
the vortex cores. He describes the effect of the
local electric field, and of the free carriers with
density n:
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where potential @ is assumed to incorporate
the one-electron charge e > 0.
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is the local density per area in the single plane
(ng is its unperturbed value at T=0 and (=0), d,
is the inter-plane distance and £~10 is the host
dielectric constant. The first and the second
terms in (2) give the interaction of the
collective and the normal charges with the
electric field, the third terms is the field
energy. The last term F(n) is the free energy of
carriers giving the definition of the local
chemical potential {=0F/on.

The system evolution is governed by
dissipative equations of the order parameters:
0A  SHcpw

¢ _ OHcpw
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and the Poison equation for the electric
potential @,
£ 2o = Lo 0 @) - ) 5
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Here ya,are the damping coefficients and can
be executed from independent experimental
measurement y,~10° energy/(m*second). The
relaxation time for the amplitude A is much
shorter than the for the phase ¢, then we can
approximately put y4 = 0, so that the energy is
always minimum with respect to A.

The equations have to be completed by the
diffusion equation for normal carriers n:

o g9 VeV + @) =0, (7)
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with & the anisotropic conductivity tensor,
which is taken to be proportional to the
carriers’ concentration n. The conductivity
along the CDW chain direction can be 100
times larger than that along the other
directions.

The boundary conditions reflect the
following properties:

1. CDW stress vanishes at all boundaries

(Z42vp — a20%) -7 = 0;
A A =
(Zﬂs VA)-v =0.

2. Normal electric field is zero at all
boundaries meaning the total electro-
neutrality and the confinement of the
electric potential within the sample:
(Zve)-v=o.

4T

3. No normal current flow through the

boundaries  such that—&nlv({ +
0

®) =0, except for the two
source/drain boundaries left for the
applied voltage. There, the chemical
potentials are applied: { + & = tV.
In the above equations x is the unit vector

along the chain axis, v is the outward unit
normal vector on the domain.

3. Numerical Method

The geometry design of our model based
on the real experimental junction is shown in
Fig. 2 with two overlapping cuts across the
sample. The junction made from CDW
material is of high isotropic conductivity,



where normally the current goes along the high
conductivity direction. However, the two slits
cut enforce the current to go the traverses
direction Y of high resistivity providing the
original strong voltage drop at the central
rectangular region. We did simulations for two
different geometries: first the simplified
geometry—the central rectangular region of
the junction, and second the full real
geometry—the restricted geometry junction.
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Figure 2. Sketch of the real geometry of the
junction, and its active rectangular center part where
the vortices can stay. The green arrows indicate the
direction of the normal current flow.

For the real geometry, the equation system
is valid in the body of the junction. However,
in the two slits there is neither condensate nor
normal electrons, we solve only the Laplace
equation for @ there (A®=0). We adopt the
marching boundary conditions (Neumann
boundary condition) for @ along the slit
boundaries.

The initial conditions are chosen to be
|¥|=1 and with zero electric field in the body
of the junction. In view of the complicated
geometry, we have chosen an implementation
of the model in COMSOL using quadratic
Lagrange elements, which turned out to give
sufficiently accurate and stable solutions. The
complex order is separated into its real part
and imaginary part W=u+iv, and their
equations written in the general form in
COMSOL. The number of degree of freedom
is about 2:10°, and the mesh density was 7nm
by 7nm in the most dense center region, which
was enough to obtain the high-resolution
results, for the typical size of the vortex is
about 50nm. Programs are run on a 4-core
Xeon workstation, and the computation time is
about 3 hours for the simple geometry and
about 6 hours for complex geometry.

4. Results and Discussion

Below we present the results for two
different geometries of the junction: first the
simplified geometry—the central rectangular
region of the junction, and second the real
geometry—the restricted geometry junction.
The temperature was taken at about 50K—

below the CDW transition temperature 59K for
NbSE3.

Two types of DLs have been revealed by
the simulation: a dynamic vortex, and a
stationary one. The dynamic vortices appear
through the early evolution after the voltage
application, and they disappear at the end. The
stationary vortices appear later and they reach
the equilibrium configuration.

Two regimes of the CDW vortex formation
have been observed during the simulation. The
initial regime in Figs.3 and 4 with the
characteristic time 10 secand (which is at the
boundary of our dissipative approximation) is
the transient, turbulent one. During this time,
the flashes of zero CDW amplitude appear at
the sample boundaries, ewvolving into well-
structured vortex cores. In addition, the
annihilation between two vortices of opposite
sign and destruction of vortices near
boundaries are observed. The number of
vortices participating in the transient process is
much larger than that left in the stationary
state. In the second regime, the remnant
vortices move slowly to find their equilibrium
positions. Finally, at time about 10° to 10°
second the system relaxes into equilibrium and
a true vortex stationary state is achieved. The
whole evolution of the system from the first
regime to the second regime can be seen in the
movie (available at site).
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Figure 3. Image snapshot of vortex traces showing
an intermediate state of vortex formation in the
rectangular geometry. Color wvarying from red to
blue corresponds to the range of amplitude from 1
to 0.

Figure 4. Image snapshot of vortex traces showing
an intermediate state of vortex formation in the
junction.

An idealized analytic theory [6, 7] predicts
that there exists a threshold voltage for
appearance of the vortices. It is to point out
that the fundamental origin of the threshold



energy can be related with the breaking of
interlayer CDW coherency. For this to happen
it requires a critical voltage difference 6Vcr ~
(hved,)? which depends on the inter-chain
coupling energy (per unit length) J,. For the
rectangle geometry and for realistically chosen
parameters, we have obtained that the first
stationary vortex appears at V=0.308A
(7.7meV). The second stationary vortex
appears at V=0.328A (8.2meV), the third one
at V=0.376A, and the forth one at V=0.568A
see Fig. 5. For the real geometry, the first
stationary vortex appears at V=0.268A
(6.7meV) and the second stationary vortex
appears at V=0.32A (8meV) see Fig. 6. We
find that the number of the stationary vortex
augments with the applied voltage.

As shown in Figs. 5 and 6 the CDW
amplitude vanishes continuously at the vortex
cores (in blue color), while it remains nearly
unperturbed and closed to its normalized value
1 (in red) for the major part of the junction.
The conversion of the CDW condensate
electrons to the normal electrons may happen
at the vortex cores, where the CDW state is
destroyed.

Figure 5. Formation of vortices in the rectangle
center of the junction. The number of vortex
increases with the applied voltage: V = 0.308A,
0.328A, 0.376A, 0.568A, respectively.
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Figure 6. Formation of vortices in the real junction.
The number of vortex increases with the applied
voltage V=0.268A, 0.32A, respectively.

The phase winds by 2z around the cortex
core (Figs. 7 and 8), which becomes the center
of phase slip. The plots of the amplitude and
the phase give us a way to identify and
visualizer the topological defects.
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Figure 7. In the rectangle geometry, the phase
rotates by 2z around the vortex core. In the color
map, the phase passes form = inired to —= in blue.
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Figure 8. The same 2z circulation of the phe{se
around the vortex core in the center for the real
geometry.
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Distribution of the electric potential @ at
the presence of one vortex is given at Fig. 9
(the rectangle geometry) and Fig. 10 (the real
geometry). The total electric charge at the
vortex core is zero, but the electric dipole
moment is built-in, thus inducing the electric
field resulting in a sharp drop of @ at the
vortex core. This should increase the tunneling
probability of electrons near the core, which
explains the peaks observed in experimental
tunneling spectra.
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Figure 9. Electric potential ® for the one-vortex
state in the rectangle geometry. The sharp variation
of @ is confined within the vortex core. Notice the
sign inversion of @ across the core.
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Figure 10. The same electric potential @ for the
one-vortex state in the real geometry.

7. Conclusions



We have performed a program of modeling
the stationary states and their transient
dynamic for the CDW in restricted geometry
junction by COMSOL. We used COMSOL to
study the microscopic properties of electronic
correlated materials, and our results give
access to stationary and transient processes at
nano-scale in space and pico-second scale in
time.

Spontaneous vortex formation is observed
above a critical value for the applied voltage.
The critical voltage is identified as the
dislocation line entry energy, in some analogy
to the Hc; field in superconductivity. A sharp
drop of the electric potential across the vortex
cores can lead to enhanced inter-layer
tunneling, which explains the observed peaks
in experimental tunneling spectra.

The studies of reconstruction in junction
for the CDW vortex state can be relevant to
modern  efforts of the  field-effect
transformation in strongly correlated materials
that also show a spontaneous symmetry
breaking.
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