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Basic research 
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Scale-up of solid-state hydrogen storage in metal hydrides 

 Simulation used for design and the evaluation of performance of the 
storage systems: dynamics, capacities, temperature levels. 

Motivation 

 Final goal: Hydrogen storage systems with low volume and weight 

 Metal hydrides: Highest hydrogen volumetric density 
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Model Material: Sodium Alanate (NaAlH4) 
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First step: 

Second step: 

Model configuration: tubular reactor 
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 Compromise between relatively high capacity (5 wt%) and moderate 
operation temperatures (125 °C – 160 °C) 

HZG 
StorHyTank 
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Modelling of H2 Sorption in COMSOL 
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Implementation in COMSOL 4.2 

Hydrogen flow 

Accumulation Flow Source Term 
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(COMSOL 4.2: Fluid Flow  Porous Media and Subsurface Flow  Darcy‘s Law) 

Dependent variable: Pressure p

Heat transfer 

Accumulation Fourier's law Source Term 
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Dependent variable: Temperature T

(COMSOL 4.2: Heat Transfer  Heat Transfer in Porous Media) 
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Intrinsic kinetics approach 

Following the kinetics of a solid-gas reaction: metal hydrides sorption 

 Deviations between theoretical and experimental obtained capacities 

 Classical approach: 

  use of “artificial terms” in the kinetics equations related to the 
 experimental capacities 

 New approach: 

  Hydride (solid reactant) considered as a mixture of different types 
 of reacting materials 

Unit cell for 
intrinsic kinetics 

Gas phase (H2) 
Inert material 
Semi-active material 

Total active material 
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(COMSOL 4.2: Chemical species transport  Transport of diluted species) 

Dependent variable: Mass concentrations 

Intrinsic kinetics 
 Simplified reaction system description 

Total active material 
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 Kinetic model developed and validated by experimental results 
Lozano G.A., et al. Empirical kinetic model of sodium alanate reacting system (I). Hydrogen absorption. Int. J. Hydrogen Energy 2010;35:6763-6772. 
Lozano G.A., et al. Empirical kinetic model of sodium alanate reacting system (II). Hydrogen desorption. Int. J. Hydrogen Energy 2010;35:7539-7546. 
Lozano G.A., et al. Optimization of hydrogen storage tubular tanks based on light weight hydrides. Int. J. Hydrogen Energy 2011; 
doi: 10.1016/j.ijhydene.2011.03.043.. 
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Example: Temperature profile 
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250 °C 
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Simulation results 
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Example: 35 mm internal diameter 

 Main result of the simulation: the prediction of the total mass of 
hydrogen stored in the system as a function of time.  

Hydrogen content Temperature (bed centre) 
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Issue Definition 

Conditions and 
constraints 

1. Basic configuration: tubular reactor  
2. Time to charge 4.5 kg H2: 10 min 

    3. Total hydrogen capacity  5 kg H2 

    4. Tank wall calculated possible max Teq 

Function to be minimised 
    Weight (Volume) of the hydrogen storage 

system  

Variables 
 

    1. Internal diameter of the tubular tank 
    2. Compaction level 

    3. Addition of expanded graphite (EG) 
4. Hydrogen pressure 
5. Tank wall material 

Case studie: Optimisation definition of sodium alanate tanks 
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Optimization results 

 Compacted material shows the lowest required system weight compared to 
loose powder.  

 System weight: reduction potential for Aluminium (6061 T6) and Super 
Duplex Steel (SS S32750). .  
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Summary and Conclusions 

 Great potential of weight reduction in hydrogen storage systems 
based on metal hydrides by compaction and by stronger and/or lighter 
tank wall materials 

 Succesfully developed simulation including 3 sub-processes: 
intrinsic kinetics, heat transfer and hydrogen transport 

 New approach for intrinsic kinetics through definition of different 
active materials.  
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