A TRANSIENT COMPUTATIONAL FLUID DYNAMIC STUDY OF A LABORATORY-SCALE FLUORINE ELECTROLYSIS CELL

Surface: Temperature (K) Arrow: Total heat flux

A TRANSIENT COMPUTATIONAL FLUID DYNAMIC STUDY OF A LABORATORY-SCALE FLUORINE ELECTROLYSIS CELL

RYNO PRETORIUS UNIVERSITY OF PRETORIA FLUORO-MATERIALS GROUP

Objective/Problem Statement

- Construct a model that predicts the physical processes during the production of fluorine by electrolysis.
- Simulation will be validated by comparing COMSOL simulations to published simulations.
- Upon completion of the reactor under construction, experimental findings will be compared to the simulations.

Background

- Uses were initially limited to the nuclear industry where it was used for uranium enrichment.
- Fluorine finds a wide range of uses today from nonstick cookware to HydroFluoroCarbons used during refrigeration.
- Electrolysis of hydrogen fluoride in molten potassium acid fluoride facilitates the formation of fluorine gas.

 $2HF \rightarrow H_2 + F_2$

Simulation Procedure

Reactor cross-section

Electrolyte cross-section

Electron Transfer Boundaries

- Current density specified on electrodes
- Insulation all other boundaries Heat Transfer Boundaries
- Temperature specified on side walls
- Insulation all other boundaries

Mass Transfer Boundaries

- Movement allow in and out of electrodes
- No flow of dissolved species through any boundaries

Momentum Transfer Boundaries

- Gas inlets at electrodes
- Gas outlet at top of electrolyte
- No flow of electrolyte through any boundaries

• Electron Transfer

 $-\nabla \cdot d(\sigma \nabla \Phi) = 0$

$$\nabla \Phi^2 = 0$$

• Heat Transfer

$$\rho C_{p} \frac{\partial T}{\partial t} + \nabla \cdot (-k\nabla T) = Q - \rho C_{p} \vec{u} \nabla T$$
$$Q = i \cdot (\Phi - \Phi_{RV}) + i \cdot \left[2.81 \frac{(100 - E)}{100} \right]$$

• Mass Transfer

$$\frac{\partial C_i}{\partial t} + \nabla \cdot (-D_i \nabla C_i - z_i \mu_{m,i} F C_i \nabla \Phi + C_i \vec{u}) = r_i$$

 $KF \cdot 2HF \rightarrow K^+ + HF + HF_2^-$

 $HF_2^- \rightarrow HF + \frac{1}{2}F_2 + e^-$

$$2HF + e^- \rightarrow HF_2^- + \frac{1}{2}H_2$$

• Momentum Transfer

$$\phi_{I}\rho_{I}\frac{\partial\vec{u}}{\partial t}+\phi_{I}\rho_{I}\cdot\nabla\vec{u}_{I}=-\nabla P+\nabla\cdot\left[\phi_{I}\left(\eta_{I}+\eta_{T}\left(\nabla\vec{u}_{I}+\nabla\vec{u}_{I}^{T}-\frac{2}{3}\left(\nabla\cdot\vec{u}_{I}\right)\vec{I}\right)\right]+\phi_{I}\rho_{I}g+\vec{F}$$

$$\nabla \cdot \vec{u}_l = 0$$

$$\frac{\partial \rho_g \phi_g}{\partial t} + \nabla \left(\phi_g \rho_g \vec{u}_g \right) = 0$$

$$i_{A} = i_{0} \left[\exp\left(\frac{\alpha_{A}F}{R_{g}T}\eta_{s}\right) - \exp\left(\frac{\alpha_{C}F}{R_{g}T}\eta_{s}\right) \right] \quad i_{C} = -i_{0} \left[\exp\left(-\frac{\alpha_{A}F}{R_{g}T}\eta_{s}\right) - \exp\left(-\frac{\alpha_{C}F}{R_{g}T}\eta_{s}\right) \right]$$

$$i_0 = Fk_c^{0.5}k_a^{0.5}C_{HF_2}^{0.5}C_{HF}^{0.5}$$

$$\eta_{s,A} = \Phi - \Phi_{0,A} \qquad \qquad \eta_{s,C} = -\Phi - \Phi_{0,C}$$

$$R_A = -\frac{1}{F}i_A \qquad \qquad R_C = -\frac{2}{F}i_C$$

Results & Discussion

Time=100 Surface: Current density norm (A/m²) Streamline: Electric field

Line Graph: Anode current density (A/m²)

Time=100 Surface: Electric potential (V) Contour: Electric potential (V)

Time=100 Surface: Temperature (K) Arrow: Total heat flux

<u>Play</u>

20k

Time=100 Surface: Concentration (mol/m^3) Arrow: Total flux

<u>Play</u>

Time=100 Surface: Concentration (mol/m^3) Arrow: Total flux

Time=100 Surface: Velocity magnitude, gas phase (m/s) Arrow: Velocity field, gas phase

Time=100 Surface: Velocity magnitude, liquid phase (m/s) Arrow: Velocity field, liquid phase

Time=100 Surface: Volume fraction, gas phase (1) Arrow: Velocity field, liquid phase

<u>Play</u>

"Effects of hydrodynamics on Faradaic current efficiency in a fluorine electrolyser" Journal of Applied Electrochemistry (2007) 37:77-85.

Reproduced from Rouston, H, Caire, JP, Nicolas, F, Pham, P (1997) "Modelling coupled transfers in an industrial fluorine electrolyser" Journal of Applied Chemistry, 28 (1998) 237-243.

▲ 384.39

380

370

360

350

Reproduced from Rouston, H, Caire, JP, Nicolas, F, Pham, P (1997) "Modelling coupled transfers in an industrial fluorine electrolyser" Journal of Applied Chemistry, 28 (1998) 237-243.

Conclusions

• The simulated results of the UP experimental reactor are reasonable and within expected limits.

 The COMSOL simulations of published experimental results compare favourably to the published results in most cases.

Recommendations

- Use of the simulated results as a guideline during the experimental investigation of the reactor performance
- Thorough investigation into physical constants used during simulation
- Investigation of equations used during simulation, specifically the Ohmic-heating equation

References

- Espinasse, G, Peyrard, M, Nicolas, F and Caire JP (2006) "Effects of hydrodynamics on Faradaic current efficiency in a fluorine electrolyser" Journal of Applied Electrochemistry (2007) 37:77-85.
- Roustan, H, Caire, JP, Nicolas, F, Pham, P (1997) "Modelling coupled transfers in an industrial fluorine electrolyser" Journal of Applied Electrochemistry, 28 (1998) 237-243.

Thank you

Boundary Conditions

• Heat Transfer Boundary Conditions

Boundary	Boundary Condition	Description	Equation
Walls in contact with heating/cooling jacket	Temperature specified	Wall temperature	$T = T_w$
		set to T_w , a	
		constant 80 °C	
All other boundaries	Thermal insulation	No heat flux	$\vec{n} \cdot (-k\nabla T) = 0$
		allowed	

• Electron Transfer Boundary Conditions

Boundary	Boundary Condition	Description	Equation
Anode	Inward current density	Current density i_A as determined by the Butler-Volmer equation	$\vec{n} \cdot i_n = i_A$
Cathode	Inward current density	Current density i_c as determined by the Butler-Volmer equation	$\vec{n} \cdot i_n = i_c$
All other boundaries	Electric insulation	No current flow allowed	$\vec{n} \cdot i_n = 0$

Boundary Conditions

Mass Transfer Boundary Conditions

Boundary	Boundary	Value/Expression	Equation
	Condition		
Anode	Dual mass	Reactive species $H\!F$ flows into electrode and $H\!F_2^-$ out of	$\vec{n} \cdot (-D_i \nabla C_i + C_i \vec{u}) = -n \cdot R_A$
	flux	electrode as defined by R_A	
Cathode	Inward	Reactive species HF_2^- flows into electrode and HF out of	$\vec{n} \cdot (-D_i \nabla C_i + C_i \vec{u}) = 0$
	current flow	electrode as defined by R_c	
All other	Mass flow	No mass flow allowed	$\vec{n} \cdot (-D_i \nabla C_i + C_i \vec{u}) = -n \cdot R_c$
boundaries	insulation		

Boundary Conditions

Momentum Transfer Boundary Conditions

Boundary	Boundary Condition	Description	Equation
Electrolyte	Liquid boundary condition: slip	Acts as a gas outlet and allows liquid slip.	$\frac{\partial \bar{u}_l}{\partial \bar{u}_l} = 0$
level	Gaseous boundary condition: gas		∂t
	outlet		$\frac{\partial u_g}{\partial t} = \phi \cdot \rho \cdot \vec{u}_g$
Anode surface	Liquid boundary condition: no slip	Allows gas production according to specified	$\vec{u}_l = 0$
	Gaseous boundary condition: gas flux	reaction rate (R_A) . No liquid flow.	$\frac{\partial \hat{u}_g}{\partial t} = n \cdot \rho_g \cdot R_A$
Cathode	Liquid boundary condition: no slip	Allows gas production according to specified	$\vec{u}_l = 0$
surface	Gaseous boundary condition: gas flux	reaction rate (R_c) . No liquid flow	$\frac{\partial \hat{u}_g}{\partial t} = n \cdot \rho_g \cdot R_c$
All other	Liquid boundary condition: no slip	Allows neither gas or liquid flow, both without	$\frac{\partial \vec{u}_i}{\partial \vec{u}_i} = 0$
boundaries	Gaseous boundary condition: no gas	siip	∂t [−] 0
	flux		