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Abstract: Interaction between the probe and a 
defect in eddy current (EC) non-destructive 
evaluation (NDE) is studied. In this work a 
differential sensor is considered and the 
problem regarded here is problem 8 from the 
testing of electromagnetic analysis methods 
(TEAM) workshops. The truncation, referring 
to the position of the outer boundaries of the 
finite element model, is evaluated in three 
dimensions (3D) by the use of an analysis in 
axial symmetry. The results show that it is 
reliable to use a model size where the positions 
of the outer boundaries are put where the 
magnetic vector potential has dropped to 1 % 
of its maximum value. The axisymmetric 
model in is compared to an analytical model 
with good results.        
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1. Introduction 
 

Modelling is a good tool for understanding 
and analysing impedance responses due to 
various flaws, such as cracks and near surface 
voids or inclusions, in EC NDE. Small 
impedance variations due to flaw and 
inspection process must be captured in a 
model. It is therefore important to use accurate 
numerical methods. The model size must, 
however, be minimized in order to carry out 
efficient computations, especially when related 
to statistical properties such as probability of 
detection. 

To use methods that comply with these 
conditions a model with axial symmetry is set 
up and analysed in a quasi-static magnetic 
analysis with harmonic fields. This case will 
first be discussed and compared to an 
analytical model. The knowledge from this 
model is then used in the set up and analysis of 
the more complex case in 3D. Tests are carried 
out with the position of the outer boundary 
placed with increasing distance from the EC 
sensor. Different mesh densities and errors are 
discussed.  

There are several benchmark problems for 
electromagnetic analysis that have been 
established in the TEAM  workshops [1]. The 

goal of these problems is to compare and 
evaluate simulations of electromagnetic 
problems. TEAM problem 8 relates to NDE of 
materials with the EC technique and is used as 
a framework for the 3D computations within 
this work. This problem has been 
experimentally evaluated in [2-4] and 
evaluated in simulations by different codes in 
[2-6]. In the work presented here this problem 
is solved with second order tetrahedral edge 
elements using COMSOL Multiphysics® with 
a quasi-static magnetic analysis considering 
only harmonic fields.  

The geometry and set up of TEAM 
problem 8 is described in figure 1. The 
parameters and dimension are presented in 
table 1. 

 
Figure 1. Set up of TEAM problem 8 with probe 
and rectangular defect. 

Table 1. Parameters and dimensions for the TEAM 
problem 8. 

Sending coil r1 18 mm 
Sending coil r2 22 mm 
Sending coil length 56 mm 
Sending coil lift-off 8 mm 
Receiving coil r3 5 mm 
Distance d 15 mm 
Receiving coil lift-off 9 mm 
Receiving coil length 54 mm 
Frequency 500 Hz 
Defect length 40 mm 
Defect depth 10 mm 
Defect width 0.5 mm 
Block conductivity 1.4 MS/m 
Block size 330x 285x 30 mm 
Penetration depth 19 mm 



 
The motion of the probe consisting of the 

outer sending coil and the two differentially 
connected receiving sensors is indicated in 
figure 1. The edges of the block must be 
considered in the model as these influences the 
signal response of the probe. The computed 
quantity considered in the problem is the 
differential impedance signal of the two 
receiving, sensor coils. The impedance signal 
is proportional to the difference in magnetic 
flux within the two coils. Only the shape of the 
impedance trajectory is considered in this 
analysis. The probe is moved parallel (x) and 
perpendicular (y) to the rectangular defect. The 
movement of the probe starts from a position 
over the centre of the defect and ends 80 mm 
away in both directions. The magnetic flux in a 
receiving coil is calculated according to  

𝜙 = � 𝑩 ∙ 𝑛�𝑑𝑆                         (1)
𝐴

 

                  
where B  is the magnetic flux density and A the 
area enclosed by the wire in which the electric 
signal is generated. The differential flux is 
calculated with and without the flaw 
corresponding to the states ϕb and ϕa, 
respectively for the two receiving coils ϕ(1) 
and ϕ(2) as 
 

∆𝜙 = �𝜙𝑏
(2) − 𝜙𝑏
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2. Governing equations 
 

Maxwell’s equations are the physical 
model used to solve electromagnetic EC 
problems. Some approximations are used in 
this case of problems related to 
electromagnetic NDE. First the low frequency 
approximation is used as the wavelengths are 
long compared to the dimensions of the model. 
This implies that the displacement currents are 
neglected as they are small compared to the 
induced currents. The approximation is 
implemented by letting ε0 be equal to zero and 
thus ignoring the displacement current. This is 
due to the high electrical conductivity and low 
frequencies used in problems concerning the 
EC method in NDE. The Maxwell’s equations 
in term of a quasi-static formulation using the 
magnetic vector potential gives  
 

 𝛻 × (𝜇−1𝛻 × 𝑨) + 𝑗𝜔𝜎𝑨 = 𝑱𝒔            (3) 
 

where Js is the source current, ω is the angular 
frequency. This equation describes the EC 
problem. 

EC coil problems often have an axial 
symmetry. The problem can then be simplified 
to an equation where the magnetic vector 
potential only has a component in the 
circumferential direction 𝑨 = (0,𝐴𝜑(𝑟, 𝑧), 0). 
Equation (3) then becomes  
 

−
𝜕2𝐴𝜑
𝜕𝑟2 −

1
𝑟
𝜕𝐴𝜑
𝜕𝑟 −
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𝜕𝑧2 +

𝐴𝜑
𝑟2 + 𝑗𝜔𝜎𝜇𝐴𝜑 = 𝜇𝐽𝜑 

  (4) 
 

in case of a homogeneous, isotropic and linear 
material. 

 
3. Analysis in axial symmetry 
 

The choice of outer boundaries plays a role 
in the accuracy of the resulting signal. If the 
outer boundaries are placed too far from the 
coil and defect a larger number of degrees of 
freedom are introduced in the model. The 
dimensions of the finite element model must 
thus be limited, truncating the space around the 
configuration of the defect and the probe.  
 
3.1 Analytical solution  
 

The value of the magnetic vector potential 
surrounding the probe can in the case of a coil 
be calculated by an analytical model [7]. A 
detailed description of this analysis is found in 
the reference. This analysis was implemented 
in MATLAB® for a coil over a two layer 
conductor in order to compare results with the 
numerical solution.  
 
3.2 Finite element solution in axial 
symmetry 
 

The magnetic vector potential surrounding 
the probe is now also calculated in a finite 
element model with axial symmetry. The 
degrees of freedom of the 3D problem are then 
decreased by the truncation of the third 
dimension. This allows the outer boundary to 
be moved away from the probe reducing its 
influence on the final solution. The dimensions 
of the TEAM problem 8, considering only the 
current carrying outer coil, are used in the 
axisymmetric finite element model.  The outer 
boundary is moved far away from the coil and 
the final mesh is dense as presented in figure 2 
in order to get an as accurate result as possible.  

 



 
 

Figure 2. Finite element model in axial symmetry.  

   The solution of the magnetic vector potential 
is here close to convergence. This is reached in 
the sense that an increase of the distance 
between the coil to the outer boundary as well 
as an increase in the number of elements in the 
model does not change the solution. The 
absolute value of the magnetic potential 
 

�𝐴𝜑� = �𝐴𝜑 ∙ 𝐴𝜑∗                       (5) 

                
is used to compare results between the 
analytical and the numerical solution.  
 
3.3 Comparison between analytical and 
finite element solution 
 
   The results are presented in figure 3 as 
contour curves for the amplitude of the 
magnetic vector potential. The curves 
represent 30, 10, 1 and 0.5 % of the maximum 
amplitude. The result for the finite element 
model is showed together with the analytical 
solution.  
   From the figure it is possible to conclude that 
there is a good agreement between the 
analytical model and the axisymmetric finite 
element solution. It is from this result possible 
to give input to the 3D analysis when it comes 
to truncating the model at the outer boundaries. 
 
4.  Solution to TEAM problem 8 
 
TEAM problem 8 represents a 3D 
configuration. The edges of the bulk material 
are influencing the differential signal in the 
receivers and must be included in the full 
analysis. 

 
Figure 3. Comparison of numerical and analytical 
solution in axial symmetry. The contour curves 
show the relative amplitude of the magnetic vector 
potential.   

First we consider the problem without 
influence from the edges, representing the 
block as an infinite plate with a thickness of 30 
mm. This configuration is used in the 
axisymmetric model and allows interpretations 
of the results depending mainly from 
truncation of the 3D problem. The outer 
boundaries are an approximation of infinity 
and must be selected carefully. The results 
from the model in axial symmetry works as a 
guideline for the positioning of these 
boundaries. The position is selected from this 
experience using the distance from the bottom 
of the coil carrying external current, the 
sending coil, to the closest point of the outer 
boundary. It is convenient to use a rectangular 
box encapsulating the solution domain and this 
is used throughout this study.   

 
4.1 Impedance of a coil in 3D 
 

The impedance of the sending coil carrying 
the external current is calculated in order to 
capture also the behaviour of an absolute 
single probe. The impedance of a coil can be 
calculated through dissipated and stored 
energy assuming that the analysis domain is 
large enough to capture the major part of the 
field. The approach for calculation of the 
impedance cannot be carried out as in the 2D 
or axisymmetric case considering only the 
magnetic vector potential of the coil [8]. This 
is due to the fact that the magnetic vector 
potential is not constant along the 
circumference of the coil in the 3D situation. 
The calculation of impedance from energy 
considerations results in 



 

∆𝑍 = 𝑍𝑏 − 𝑍𝑎 =
1
𝐼2
� (𝑬𝒃 × 𝑯𝒃

∗ − 𝑬𝒂 × 𝑯𝒂
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       = 1
𝐼2 ∫ ∇ ∙ (𝑬𝒃 × 𝑯𝒃

∗ − 𝑬𝒂 × 𝑯𝒂
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where Zb and Za represent the impedance with 
and without the flaw respectively [9]. Here, V 
is the total volume of the model and an 
accurate calculation of impedance is in some 
sense relying on a capture of the total field 
built up by the external current in the coil. The 
impedance as well as the differential signal in 
the receivers is calculated as the difference 
between the solution without and with the flaw 
at each position of the probe.  
 
4.2 Model set up  
 

The axisymmetric model and the 3D model 
are set up and analyzed using the quasi-static 
magnetic analysis with harmonic fields. The 
impedance signal is calculated according to 
equation (6) for the coil carrying external 
current and by the use of equation (1) and (2) 
considering the receiving sensor coils. The 
computation is at all probe positions done 
twice. First by setting the electric conductivity 
in the defect to the same value as the bulk 
material and then to set it to the value of air, 
which is zero. For both these computations an 
identical mesh is used. The computation is 
then showing the signal difference due to the 
defect. The use of the same mesh is introduced 
in order to minimize the errors, which are 
further discussed in section 4.5. The elements 
constituting the current carrying coil have zero 
electric conductivity both in 3D and in the 
axisymmetric model. The external current is 
applied in the tangential direction of the 
sending coil according to figure 4, where the 
distribution of the induced currents and mesh 
around the defect are included. 
 
4.3 Position of the outer boundaries in 3D 
 
The results from section 3.3 give an indication 
of how fast the magnetic vector potential 
decreases outside the probe. The TEAM 
problem 8 is first implemented with a defect 
on a block without edges. Four models with 
increasing distance between the probe and the 
outer boundaries are then tested both for the 
parallel and perpendicular motion of the probe. 

 
 
Figure 4. Induced current distribution on the 
surface around the defect. 

The reason for excluding the edges of the 
bulk material first is based on the similarity of 
the vector potential as compared to the 
axisymmetric solution. The defect is however 
present in the 3D case. The four model sizes 
represent boundary positions where the 
amplitude of the magnetic vector potential has 
decreased to 30, 10, 1 and 0.1 %.  The result is 
presented in figure 5 and 6 for parallel and 
perpendicular motion respectively. 

 
Figure 5. Differential signal during motion parallel 
to the length of the defect. Four positions of the 
outer boundaries are evaluated. Only the shape of 
the impedance trajectory is considered. 

 
Figure 6. Differential signal during motion 
perpendicular to the length of the defect.  



From the figures it is possible to conclude that 
it is important to put the outer boundaries at 
sufficient distance from the probe. However, 
the signal characteristics are captured even 
with a quite small distance to the boundaries. 
The signal is close to a converged solution if 
the outer boundaries are placed at the position 
where the magnetic vector potential has 
dropped to about 1 % of its maximum value.  
   Considering the impedance value of the 
sending coil calculated from equation (6) it is 
possible to draw similar conclusions. The 
result for this analysis is presented in figure 7. 

 
Figure 7. Impedance of the sending coil during 
parallel motion. 

4.4 Edge effect 
 

A first approach may be to let the edge of 
the block be introduced simply as a part of the 
elements constituting the air. However, in that 
case the edge effect will be disregarded in 
computations of the impedance signal using 
the modelling approach presented here. To 
avoid this, the edge is considered as a second 
defect and the signal calculated without the 
flaw is carried out on a block material that 
extends out to the boundaries of the model. 
The resulting differential signal in the 
receivers is presented in figure 8 and 9 for the 
scan parallel and perpendicular to the defect 
respectively.  

The figures show that the influence from 
the edge is present at a distance of 
approximately 120 mm from the probe axis 
and has a large impact on the signal. Positions 
of the probe relative the centre of the defect are 
included for both the parallel and 
perpendicular motion in the figures. Resulting 
impedance of the sending coil with and 
without the edges in block is presented in 
figure 10.  

The applied mesh is in general selected 
using principles from appendix A. The mesh 
M3 presented in table 2 is used throughout this 
analysis. 

 
Figure 8. Differential signal in the receivers during 
parallel motion. Probe position relative the center of 
the defect (mm). 

 

 
Figure 9. Differential signal in the receivers during 
perpendicular motion. Probe position relative the 
center of the defect (mm). 

 

 
Figure 10. Impedance signal in the sending coil 
during parallel motion. 

 
 
 



4.5 Errors 
 

The modelled result shows good agreement 
with previous published experimental and 
numerical results. It is however important to 
point out the sources of errors that arise in the 
modelling scheme presented here. First we 
assume that the frequency is low, neglecting 
the displacement current but also describing 
the applied external current as homogeneous 
over the cross sectional area of the coil in 
which the conductivity is zero. This will 
reduce the influence of resistive losses and 
capacitive effects in the probe. The 
computational approach tends however to 
reduce errors introduced by approximations of 
the probe as the result relies on the difference 
of solutions with and without the defect. The 
second source of error that is important to 
consider in the finite element analysis is the 
introduced noise from the non-symmetric 
mesh. The individual probe positions will not 
be represented by the same mesh and the 
differential receivers will have an individual 
mesh configuration. To further analyze the 
error the TEAM problem 8 is set up with the 
sensor rotated 90°. The expected signal is zero 
impedance difference as the two receivers is 
placed symmetrically above the defect and 
block at all positions along the path of the 
probe. The maximum differential signal under 
these conditions is however approximately 0.5 
% of the maximum amplitude due to the 
defect. This indicates the numerical error due 
to the set up of the model. The error grows 
with a coarse mesh and is about 10 % using 
M1 presented in figure 11 and table 2 in 
appendix A.  
 
5 Conclusions 
 

The results presented here shows 
agreement with previous reported numerical 
and experimental work. The outer boundary 
should in practice be placed at least at the 
point where the magnetic vector potential has 
dropped to 1%. This position can be calculated 
by a model with axial symmetry. If the 
computational domain is further decreased, we 
must expect the modelling error to increase. 
The mesh density tests show that it is most 
important to have a fine mesh around the 
probe. This has an impact on how the external 
current is described and the region has also the 
largest impact on signal calculation as this 
volume has high energy density. A coarse 
mesh of the probe can give erroneous 

prediction when calculating the impedance 
signal from the flux within  the receiving coils. 
The mesh around the defect has a smaller 
impact on the computed result. This relates to 
the fact that all the models studied have an 
element size of the order of 1-10% compared 
to the penetration depth in the bulk material.  

 
References  
 
1. Website: compumag society, compumag.org 
2. Bossavit, A. and Verite. The trifou code 
solving the 3-d eddy current problem by using 
h as a state variable, IEEE Trans. Magn. 19(6), 
2465 - 2470 (1983) 
3. Takagi, T., Hashimoto, M., Arita, S., 
Norimatsu, S., Sugiura, T. and Miyata, K. 
Experimental verification of 3d eddy current 
analysis code using t-method, IEEE Trans. 
Magn. 26(2). 474 - 477 (1990) 
4. Verite, J. A coil over a crack. (results for 
benchmark problem 8 of team workshop), 
COMPEL, 9(3), 155–167 (1990) 
5. Badics, Z., Matsumoto, Y., Aoki, K., 
Nakayasu, F., Uesaka, M. and Miya, K. 
Accurate probe-response calculation in eddy 
current nde by finite element method, Journal 
of Nondestructive Evaluation, 14(4), 181-192 
(1995) 
6. Song, H. and Ida, N. An eddy current 
constraint formulation for 3d electromagnetic 
field calculations, IEEE Trans. Magn. 27(5), 
4012 - 4015 (1991) 
7. Dodd, C. and Deeds, W. Analytical 
solutions to eddy-current probe-coil problems, 
Journal of Applied Physics, 39(6), 2829 - 2838 
(1968) 
8. Ida, N. Alternative approaches to the 
numerical calculation of impedance, NDT 
International, 21  27–35 (1988) 
9. Auld, B.A. and J.C. Moulder. Review of 
Advances in Quatitative Eddy Current 
Nondestructive Evaluation. Journal of 
Nondestructive Evaluation 18(1), 3–36 (1999) 
10. Website, Picasso project (picasso - 
improved reliability inspection of aeronautic 
structure through simulation supported pod), 
http://www.picasso-ndt.eu, (2011). 
 
Acknowledgements 
 

The authors wish to thank Prof. Anders 
Boström for valuable discussions and for 
pointing out improvements to this paper. This 
work is carried out within the European 
collaboration project Picasso [10]. The support 
from Volvo Aero and the funding from the 



European commission within the FP7 
programme are greatly acknowledged.  
 
Appendix A: Mesh considerations  
 

The finite element mesh influences the 
computational time, memory usage and 
computed result. The aim of this study is to 
conclude how dense the mesh must be and to 
understand in which region the computational 
effort should be concentrated. However, if the 
mesh density is increased in the defect volume 
this will in turn have an effect on the mesh also 
in the probe. The aim is to vary the mesh 
mainly in one of the regions at a time.  

The model truncation is put beyond the 
point where the magnetic vector potential has 
decreased to 1 % of its maximum amplitude. 
First we consider the mesh density of the 
probe. The differential signal in the two 
receivers is calculated according to equation 
(2). The number of elements (NOE) in each 
region is presented in table 2 and the 
differential flux trajectory in figure 11. 
 
Table 2. Number of elements (NOE). 

Mesh label M1 M2 M3 M4 
NOE coil 350 530 1264 3902 
NOE defect 385 385 385 385 
NOE receiver 30 104 296 945 
NOE total 6037 7181 12121 25827 
  
Selecting an element density appropriate to 
model the probe can be concluded from the 
result in figure 11. The effect of the mesh 
density of the defect can now be studied. The 
result from changing the number of elements 
in the defect region is presented in figure 12 
with data presented in table 3. 
 
Table 3. Number of elements (NOE). 

Mesh label M5 M6 M7 M8 
NOE coil 1264 1264 1264 1265 
NOE defect 385 435 1103 4355 
NOE receiver 296 296 296 296 
NOE total 12165 12426 15032 26831 
  
From figure 11 and 12 it is possible to 
conclude that it is most important to keep the 
mesh density high enough to properly resolve 
the probe. In this case the defect is small or 
similar in size to the penetration depth which 
contributes to the insensibility to variations in 
the number of elements constituting the defect. 
A small number of elements within the probe 

may however give erroneous results. The mesh 
M3 was used for the analysis in section 4.4. 
 

 
Figure 11. Trajectory of the differential signal in 
the receivers moving parallel to the defect.  

 

 
Figure 12 Trajectory of the differential signal in the 
receivers moving parallel to the defect.  
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