COMSOL CONFERENCE BOSTON 2011

Effect of Gas Flow Rate and Gas Composition in Ar/CH₄ Inductively Coupled Plasmas

Keisoku Engineering System Co., Ltd., JAPAN

Dr. Lizhu Tong

October 14, 2011

Contents

- 1. Plasma processing and nonequilibrium discharge
- 2. Plasma simulation using COMSOL Multiphysics
- 3. Ar/CH₄ ICP plasma model
- 4. Results
- 5. Conclusions

Plasma processing and nonequilibrium discharge (1)

Plasma processing has been used for fabricating semiconductors. In order to make a hyperfine feature on the wafer, a high aspect-ratio etching is needed.

The energy of ions incident on the wafer must be controlled to realize an accurate and reliable processing.

Low gas pressure in etching

Nonequilibrium discharge

Plasma processing and nonequilibrium discharge (2)

- For low pressure discharges the plasma is not in thermal equilibrium.
- \blacktriangleright In the bulk plasma, the electron temperature $T_{\rm e}$ greatly exceeds the ion temperature $T_{\rm i}$ and neutral gas temperature $T_{\rm g}$.

Types of plasma involved in COMSOL Multiphysics

The common types of plasma:

- Inductively coupled plasma (ICP)
- DC discharge
- Microwave plasma
- Electrical breakdown
- Capacitively coupled plasma (CCP)
- Combined ICP/CCP reactor

Plasma module physics interfaces

- The drift diffusion interface
- The heavy species transport interface
- The Boltzmann equation, Two-term approximation interface
- The inductively coupled plasma interface (ICP)
- The microwave plasma interface
- The capacitively coupled plasma interface (CCP)
- The DC discharge interface

Plasma module format in COMSOL Multiphysics

Plasma chemistry (1)

Neutrals (7)

 $CH_{4} \\ C_{2}H_{2}, C_{2}H_{4}, C_{2}H_{6}, C_{3}H_{8} \\ H_{2}, Ar$

lons (13)

 $\begin{array}{c} \text{CH}^+, \text{CH}_2^+, \text{CH}_3^+, \text{CH}_4^+, \text{CH}_5^+ \\ \text{C}_2\text{H}_2^+, \text{C}_2\text{H}_4^+, \text{C}_2\text{H}_5^+, \text{C}_2\text{H}_6^+ \\ \text{H}^+, \text{H}_2^+, \text{Ar}^+, \text{Ar}\text{H}^+ \end{array}$

Radicals (5)

 ${\rm CH, CH_2, CH_3, CH_5}\atop {\rm H}$

Excited species (5)

CH₄*(2*vib*.), H(2*p*,3*p*), Ar*

Electron reactions included in the model

No.	Reaction	
1	$Ar + e^- \rightarrow Ar^* + e^-$	
2	$Ar^* + e^- \rightarrow Ar + e^-$	
3	$Ar + e^- \rightarrow Ar^+ + 2e^-$	
2 3 4 5	$Ar^* + e^- \rightarrow Ar^+ + 2e^-$	
5	$CH_4 + e^- \rightarrow CH_4^* + e^- (2 \ vib.)$ $CH_4 + e^- \rightarrow CH_4^+ + 2e^-$ $CH_4 + e^- \rightarrow CH_3^+ + H + 2e^-$	
6	$CH_4 + e^- \rightarrow CH_4^+ + 2e^-$	
7	$CH_4 + e \rightarrow CH_3 + H + 2e$	
8	$CH_4 + e^- \rightarrow CH_3 + H + e^-$	
9	$CH_4 + e^- \rightarrow CH_2 + 2H + e^-$	
10 11	$CH_4 + e^- \rightarrow CH + 3H + e^-$ $CH_4 + e^- \rightarrow CH + 3H + e^-$	
12	$H_2 + e^- \rightarrow H_2^+ + 2e^-$	
13	$H_2 + e^- \rightarrow H_2 + 2e^-$ $H_2 + e^- \rightarrow 2H + e^-$	
14	$H_2 + e^- \rightarrow H_1 + e^-$ $H + e^- \rightarrow H_2(2p, 3p) + e^-$	
15	$H(2p,3p) + e^- \rightarrow H + e^-$	
16	$H + e^- \rightarrow H^+ + 2e^-$	
17	$C_2H_2 + e^- \rightarrow C_2H_2^+ + 2e^-$	
18	$C_2^2 H_4^2 + e^- \rightarrow C_2^2 H_2^2 + 2H + e^-$	
19	$C_2H^+ + \rho^- \rightarrow C_2H^+ + 2\rho^-$	
20	$C_{2}H_{5}^{4} + e^{-} \rightarrow C_{2}H_{4} + H + e^{-}$ $C_{2}H_{5}^{5} + e^{-} \rightarrow C_{2}H_{5}^{4} + 2e^{-}$ $C_{2}H_{5}^{5} + e^{-} \rightarrow C_{2}H_{4}^{5} + H + 2e^{-}$ $C_{3}H_{5}^{5} + e^{-} \rightarrow C_{3}H_{4}^{5} + H + 2e^{-}$	
21	$C_2H_5 + e^- \rightarrow C_2H_5^+ + 2e^-$	
22	$C_2H_5 + e^- \rightarrow C_2H_4 + H + 2e^-$	
23	$L_2H_6 + e \rightarrow L_2H_5 + H + e$	
24	$C_2H_6 + e^- \rightarrow C_2H_4 + 2H + e^-$	
25	$C_2H_6^- + e^- \rightarrow C_2H_6^+ + 2e^-$	
26	$C_2H_6^0 + e^- \rightarrow C_2H_5^+ + H + 2e^-$	
27	$CH_3 + e^- \rightarrow CH_2 + H + e^-$	
28	$CH_3 + e^- \rightarrow CH + 2H + e^-$	
29	$CH_3 + e^- \rightarrow CH_3^+ + 2e^-$	
30	$CH_2 + e^- \rightarrow CH + H + e^-$	
31	$CH_{2} + e^{-} \rightarrow CH_{2}^{+} + 2e^{-}$	
32	$CH + e^- \rightarrow CH^+ + 2e^-$	
33	$ArH^+ + e^- \rightarrow Ar + H$	

8

Plasma chemistry (2)

Reactions of ion and neutral species

No.	Reaction
34	$CH_4 + CH_3^+ \rightarrow CH_4^+ + CH_3$
35	$CH_4 + CH_3^+ \rightarrow CH_4^+ + CH_3$ $CH_4 + CH_3^+ \rightarrow C_2H_5^+ + H_2$
36	$CH_4 + CH_4^+ \rightarrow CH_5^+ + CH_3$
37	$H_2 + CH_4^+ \rightarrow CH_5^+ + H$
38	$C_2H_6 + CH_5^+ \rightarrow C_2H_5^+ + CH_4 + H_2$
39	$CH_4 + Ar^+ \rightarrow CH_3^+ + H + Ar$
40	$H_2 + Ar^+ \rightarrow ArH^+ + H$
41	$H_2 + Ar^+ \rightarrow Ar + H_2^+$

Reactions among neutral species

No.	Reaction
42	$CH_3 + CH_3 \rightarrow C_2H_6$
43	$CH_3 + H \rightarrow CH_4$
44	$C_2H_5 + H \rightarrow CH_3 + CH_3$
45	$C_2H_5 + CH_3 \rightarrow C_3H_8$
46	$CH_2 + H \rightarrow CH + H_2$
47	$CH + CH_4 \rightarrow C_2H_5$
48	$CH_2 + CH_4 \rightarrow CH_3 + CH_3$
49	$CH_2 + CH_4 \rightarrow C_2H_4 + H_2$
50	$CH_4 + CH \rightarrow C_2H_4 + H$
51	$CH_3 + CH_2 \rightarrow C_2 \dot{H}_4 + H$
52	$C_2H_5 + H \rightarrow C_2H_4 + H_2$
53	$CH_2 + CH_2 \rightarrow C_2H_2 + H_2$
54	$Ar^* + Ar^* \rightarrow Ar^+ + Ar + e^-$
55	$Ar^* + Ar \rightarrow Ar + Ar$
56	$Ar^* + H_2 \rightarrow Ar + H + H$

Electron transport

COMSOL Multiphysics solves a pair of drift diffusion equation for the electron density and electron energy density.

$$\frac{\partial}{\partial t}(n_e) + \nabla \cdot \Gamma_e = R_e$$

$$\frac{\partial}{\partial t}(n_{\varepsilon}) + \nabla \cdot \Gamma_{\varepsilon} + \mathbf{E} \cdot \Gamma_{e} = R_{\varepsilon}$$

$$\Gamma_e = -n_e(\mu_e \mathbf{E}) - D_e \nabla n_e$$

$$\Gamma_{\varepsilon} = -n_{\varepsilon}(\mu_{\varepsilon} \mathbf{E}) - D_{\varepsilon} \nabla n_{\varepsilon}$$

Source term

$$R_e = \sum_{j=1}^{M} x_j k_j N_n n_e$$

Rate coefficient
$$k_j = \gamma \int_0^\infty \varepsilon \sigma_j(\varepsilon) f(\varepsilon) d\varepsilon$$
 $\gamma = (2q/m)^{1/2}$

Source term

$$R_{\varepsilon} = \sum_{j=1}^{P} x_j k_j N_n n_e \Delta \varepsilon_j$$

$$\gamma = (2q/m)^{1/2}$$

Electron transport boundary conditions

- There are a variety of boundary conditions available for the electrons:
 - Wall which includes the effects of :
 - · Secondary electron emission
 - · Thermionic emission
 - · Electron reflection
 - Flux which allows you to specify an arbitrary influx for the electron density and electron energy density.
 - Fixed electron density and mean electron energy
 - Insulation

Heavy species transport

where

Transport of the heavy species (non-electron species) is determined from solving a modified form of the Maxwell-Stefan equations :

$$\rho \frac{\partial}{\partial t} (w_k) + \rho (\mathbf{u} \cdot \nabla) w_k = \nabla \cdot \mathbf{j}_k + R_k$$

$$\mathbf{j}_k = \rho \omega_k \mathbf{V}_k \qquad \qquad \mathbf{V}_k = \sum_{j=1}^Q \widetilde{D}_{kj} \mathbf{d}_k - \frac{{D_k}^T}{\rho \omega_k} \nabla \ln T$$

$$\mathbf{d}_k = \frac{1}{cRT} \left[\nabla p_k - \omega_k \nabla p - \rho_k \mathbf{g}_k + \omega_k \sum_{j=1}^Q \rho_j \mathbf{g}_j \right]$$

The multiphysics interfaces contain an integrated reaction manager to keep track of the electron impact reactions, reactions, surface reactions and species.

Gas flow transport

The neutral gas flow is determined by the Navier-stokes equations:

Conservation of mass
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Conservation of momentum

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot [-p\mathbf{I} + \tau] + \mathbf{F}$$
 where
$$\tau = 2\mu \mathbf{S} - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I}$$

$$\uparrow$$

$$\mathbf{S} = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$$

Electrostatic field

➤ The plasma potential is computed from Poisson's equation:

$$-\nabla \cdot \varepsilon_0 \varepsilon_r \nabla V = \rho$$

➤ The space charge is computed from the number densities of electrons and other charged species.

$$\rho = q \left(\sum_{k=1}^{N} Z_k n_k - n_e \right)$$

Electromagnetic field

For inductive discharges we solve the magnetic field in the frequency domain:

$$(j\omega\sigma - \omega^2 \varepsilon_0 \varepsilon_r) \mathbf{A} + \nabla \times (\mu_0^{-1} \nabla \times \mathbf{A}) = \mathbf{J}^e$$

Ar/CH₄ ICP plasma model (1)

ICP plasma model

Computational conditions

– Gas: Ar/CH₄ mixtures

- RF frequency: 13.56 MHz

- Operating pressure: 20 mTorr

- Temperature: 300 K

- Input power: 300 W

- Fluid flow: laminar

- Gas flow rate: 20-1000 sccm

Ar fractions: 0-1

- EEDF (Electron energy distribution function):

Druyvesteynian

Ar/CH₄ ICP plasma model (2)

Results (1)

Discharge structure in a 95%Ar/5%CH₄ ICP plasma at a gas flow of 50 sccm

Results (2)

Electron and ion densities

Results (3)

Radical number density

Number density (1/m3)

Results (4)

Results (5)

Ion number density

Results (6)

1E+20 1E+19 Density (m⁻³) 1E+18 H atom 1E+17 **→**0%Ar 1E+16 **-**□-95%Ar 1E+15 1E+14 0 200 400 600 800 1000 Flow rate (sccm) 1E+20 CH₂ radical 1E+19 Density (m⁻³) 1E+18 1E+17 **→**0%Ar 1E+16 -----95%Ar 1E+15 1E+14 200 600 800 1000 400 Flow rate (sccm)

Radical number density

Conclusions

- ➤ The simulations of low-pressure inductively coupled rf plasmas in Ar/CH₄ were performed by coupling plasma simulation with fluid dynamics calculation.
- > It is found that the electron densities increased and electron temperatures decreased with a rise in gas flow rate for the different Ar fractions. The radicals CH₃, CH₂, CH, and H appeared the high densities over all the gas flow rates and different Ar fractions.
- The gas flows presented the largest influence on plasma properties at a small amount (5%mol) of CH₄ added to Ar.
 - From 20 to 1000 sccm, the densities of CH₃⁺ ions increased one order and those of CH₅⁺ and C₂H₅⁺ increased over two orders.
- The control of gas flow rate and gas composition would be very beneficial in obtaining the deposition of good quality thin films.
- It could be concluded that by using COMSOL Multiphysics, the simulations in actual plasma reactors could be realized by coupling with the calculations of CFD, heat transfer, electromagnetic field and etc...

