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Abstract: A diffusion-based method can be used 
in COMSOL Multiphysics to distort the bounda-
ries in a map to represent thematic data. We use 
a diffusion model coupled with geometry defor-
mation to construct a cartogram representing 
population differences. Thematic data, such as 
population, is used to establish the initial values 
for the diffusion problem and the “Moving Mesh 
Interface” is used to move the boundaries ac-
cording to the velocity generated from the diffu-
sion problem. We apply this cartogram construc-
tion technique to thermocouple locations to max-
imize the accuracy of measuring the spatial vari-
ation of temperature. A heat conduction model is 
used to generate the Laplacian of the temperature 
field.  This is used to provide the initial values 
for diffusion-cartogram construction.  The carto-
gram maps a uniform distribution of measure-
ment points back to the original geometry.  This 
results in a distribution of measurement points 
that equally distributes the approximation error 
across the spatial region. 
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1. Introduction 
 

Measuring temperature profiles is an impor-
tant part of product and process development.  
We often encounter the need to accurately esti-
mate temperature or other variable over spatial 
regions using the fewest number of sensors.  
This report addresses the issue of calculating 
improved sensor locations.  The specific problem 
addressed is how to accurately estimate tempera-
ture profiles in a diesel particulate filter under-
going thermal shock testing. 

If a part has a great deal of symmetry, plac-
ing temperature sensors can be straightforward, 
but many systems have an irregular geometry 
making sensor location non-intuitive.  Uniform 
cylindrical diesel particulate filters have relative-
ly intuitive sensor placement, but when a filter is 
built up from segments, the resulting geometry 
makes sensor placement an issue. 

There are suggestions in the literature for im-
proving sampling along one dimension [1] but 

extending to two or three dimensions is not ob-
vious. If you consider each sensor as representa-
tive of a “sampled region” what is needed is to 
change the areas of the regions such that the ap-
proximation errors become uniformly distri-
buted. Considering that a cartogram distorts geo-
graphical regions to provide a uniform distribu-
tion of some thematic variable, this suggests a 
way to redistribute sensors in an optimal way. 

 
2. Cartogram Construction 
 

A relatively recent method for cartogram 
construction has been published by Gastner and 
Newman [2].  This starts with the idea that if 
there is a non-equal distribution of population, a 
diffusion process would cause the distribution to 
become more even.  If the boundaries “flow” 
with the population, the resulting boundary areas 
should reflect an equal population.  They start 
with the description of the diffusion process. 
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The exact value of the diffusion coefficient 
does not matter for the cartogram method, but 
keeping track of units may aid understanding.  
The initial condition, p[t=0], is the original popu-
lation density value.  If “insulating” boundary 
conditions are used, the total amount of popula-
tion will remain constant within the geometry 
chosen, because it cannot “flow” outside of the 
figure boundary.  It is useful to include non-
populated areas such as lakes and oceans to aid 
in preserving a recognizable shape.  These re-
gions are specified with the same overall average 
population density as the populated region; this 
tends to reduce distortion. 

Given the solution to the diffusion problem, 
p[t,x,y], the flux is expressed as: 
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The flux can also be expressed as a concen-

tration value times a velocity: 
vpJ   

The velocity, which can be used to move the 
boundaries, is: 
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Note that with the units for the diffusion coeffi-
cient of length^2/time, the velocity term will 
have units of length/time. 
 
We created a cartogram using a diffusion method 
in COMSOL Multiphysics.   Making cartograms 
is a useful function, but not typically seen in en-
gineering projects.  

 
3. Cartograms in COMSOL Multiphysics 
 

The diffusion calculation uses the COMSOL 
“Mathematics Interface.”  Thematic data, such as 
population, establishes the initial values for the 
diffusion problem.  The gradient of the solution 
generates a velocity term for the movement of 
the boundaries.  The COMSOL “Moving Mesh 
Interface” moves the boundaries according to the 
velocity function generated from the diffusion 
problem. 

Simplified state borders are generated as .dxf 
files, and imported into the geometry.  The initial 
values of each state are set to the population den-
sity for the state.   

 
Figure 1. Initial population density. (log scale) 

 
There is a factor of about 300 between the 

extremes in population density.  The initial value 
of the surrounding region (lakes, oceans, Canada, 
Mexico) set to average population density of the 
United States.  The diffusion model then allows 
the population to even out, using the COMSOL 
Mathematics General Form PDE.  A zero-flux 
boundary condition is used on the outer rectan-
gle.  Border movement is calculated by the 
COMSOL Deformed Geometry form.  The outer 
rectangle border has a prescribed mesh dis-
placement of zero.  A prescribed mesh velocity is 
used for the state borders.  Because of sharp dif-
ferences in population densities initially, the 
mesh velocity for border movement is damped at 

the beginning.  The functional forms of the bor-
der velocities are: 

 Vx = -uy *(1-exp(-10*t))/u 
  Vy = -uy *(1-exp(-10*t))/u 
 
During the diffusion process, the low popula-

tion areas contract, and the high population areas 
expand. 

 
Figure 2. A stage in population diffusion. 

 
A Damping (diffusion) Coefficient of 1 gives 

uniform population distributions in about 10 time 
units.   

 
Figure 3. Final cartogram of U. S. population. 

 
4. Application to Sensor Location  

 
Now we apply the cartogram construction 

technique to distribute thermocouple locations to 
maximize the accuracy of the measurement of 
the spatial variation of temperature.  An initial 
model of a heat generation and conduction prob-
lem is used to generate a basis solution for the 
system.   

 
Figure 4. Typical temperature distribution. 

 
Since the heat transfer problem is a second 

order partial differential equation, a reasonable 
approximation is by cubic functions.  The error 
term in a cubic approximation function is on the 
order of the value of the second derivative of the 



 

 

solution value.  The value of the second deriva-
tive is available in the solution to the heat con-
duction problem. 

 
Figure 5. Estimate of approximation error. 

 
Our procedure is: 
1. Solve the heat conduction problem to find a 

typical temperature distribution 
2. Extract the Laplacian of the temperature data 

as an estimate of the approximation error 
3. Take the error estimate and use a diffusion 

process to equalize the error, producing a 
transform from the original coordinates to an 
“equal-error” coordinate system 

4. Use this transform to redistribute sensor loca-
tions 
a. A uniform distribution of measurement 

points is applied to the cartogram. 
b. The locations are mapped back to the 

original geometry   
c. This results in a distribution of mea-

surement points the equally distributes 
the approximation error across the spatial 
region. 

 
4. Formulation of the Method  

 
The redistribution problem is formulated as a 

coupled partial differential equation model.  
Three partial differential equations are solved on 
the same geometric space. 

 
PDE #1 solves the error diffusion problem.  

There are no convection or source terms.  Zero 
flux boundary conditions are used at the outer 
extremes of the part geometry.  The initial value 
is the error estimate, which is the Laplacian of 
the temperature field from the approximate heat 
conduction model. 
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PDEs #2 & 3 solve the boundary motion 
problem.  In this case we move the coordinate 
system rather than explicit boundaries.  These 
PDEs have convection but no diffusion or source 
terms.  The convection velocity is calculated 
from the gradient of PDE #1 following Gastner-
Newman method: 
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The initial value of PDE #2 at each point is 

the x coordinate; the initial value for PDE #3 at 
each point is the y coordinate.  As the error “dif-
fuses” the coordinate values are moved, just as 
the boundaries in the cartogram problem.  At 
equilibrium, when the error is equally distri-
buted, the new coordinates can be used to trans-
form the sensor locations. 
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Figure 6. Progress of diffusion of the “error”. 

 

 
Figure 7. Movement of the x-coordinate value 
 

 
Figure 8. Movement of the y-coordinate value 

 
Figures 6 to 8 show the progress of the diffu-

sion calculation.  The equilibrium values are the 
final distorted coordinate system representing an 
even approximation error.  Sampling points can 
be evenly distributed across this “evenly-
distributed-error” coordinate system.  There are 
nine measurement points used, which is appro-
priate for the instrumentation in this experiment.  
If fewer or greater numbers of sensors are de-



 

 

sired, this can be accommodated in this initial 
placement. 

 
5. Redistributing sensors  

 
The formulae for re-distributing sensors are 

below. 
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The values of x and y represent a trans-

formed coordinate system. 

 
Figure 9. “Equal-error” coordinate system with even-
ly spaced measurement points superimposed. 

 
Transforming the evenly distributed sensor 

locations back to the original coordinates gives 
the optimal sensor locations. 

 
 

Figure 10. Optimal measurement point distribution. 
 
The center point shows unusual behavior.  

The suggested location is off-center.  This ap-
pears to be a result of sensitivity to the placement 

of the point used as a starting value.  Since the 
temperature profile is so flat, this would not 
make a practical difference, and the user may 
choose to stay with the original point with little 
affect on the results. 

 

 
Figure 11. Movement of points on temperature field. 
 

This method of distributing thermocouple 
points is a much more fundamental approach 
compared to statistical random sampling proce-
dures. 

The chief strength of the technique is its ap-
plicability to geometry of any complexity. 

 
6. Conclusions  

 
While building cartograms may not be in the 

project description for many engineers, the gen-
eral approach to locating sensors is of great utili-
ty in many situations.  While the present work is 
in a two dimensional space, extension to three 
dimensions is straight forward.  The present 
work is optimal for a single point in time, but 
there is a possibility that the method could be 
extended to optimize sensor placement over a 
range of times 
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