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Abstract: This paper aims to propose a level set 
method for topology optimization of an 
electromagnetic system. The classical shape 
optimization method has a meshing problem for 
shape changes. The level set method is employed 
to overcome this difficulty, due to its efficient 
representation of evolving geometry. The 
velocity field is required to solve the level set 
equation of the Hamilton-Jacobi equation. It is 
obtained using the continuum shape sensitivity in 
a closed form by the material derivative concept. 
The optimization problem is modeled as a 
coupled system of Poisson’s equation and the 
level set equation. They are solved using a 
standard FEM in the time domain. The design 
goal is to obtain the maximum torque for an 
operating electrostatic actuator and synchronous 
reluctance motor (SynRM) respectively.  
 
Keywords: Optimization, level set method, 
FEM, sensitivity analysis. 
 
1. Introduction 

 
The classical optimization method has been 

applied to many design problems for 
electromagnetic systems. One of its major 
difficulties is related to meshing problems 
arising from shape modifications. Several 
researches have tried to formulate shape 
optimization with fixed mesh analyses based on 
fixed grid finite elements to circumvent these 
kinds of technical difficulties with moving mesh 
problems. This approach was naturally 
associated with the level set description of 
geometry to provide an efficient treatment of 
problems involving geometry changes and 
discontinuities. The level set method is a 
numerical technique first developed to track 
moving interfaces. It was first devised by Osher 
and Sethian [1] and has been recently introduced 
to the field of structure shape optimization [2, 3]. 

The level set method has several advantages. 
Its main advantage is that it enables an accurate 
description of the boundaries on a fixed mesh. 
Therefore, it provides us with fast and efficient 

numerical algorithms. It can also handle 
topological changes, since it allows boundaries 
to naturally split or merge without using 
additional techniques, by controlling the level-set 
function of the Hamilton–Jacobi equation. Such 
treatment of topological changes can transform a 
difficult topology optimization problem into a 
relatively easier shape optimization problem. In 
this paper, we apply the level set method to 
topology optimization of an electrostatic actuator 
and synchronous reluctance motor (SynRM) 
using continuum sensitivity [4-7] for the velocity 
field that is inserted into the Hamilton–Jacobi 
equation for the level set function. The goal of 
the actuator and rotor of SynRM design is to 
generate maximum torque operation [8]. The 
numerical algorithm is implemented with a 
standard finite element procedure. 
 
2. Concept of LSM 

 
We employ the level set method to define 

evolving boundaries, since it provides a 
convenient means to describe closed interfaces 
of curves and surfaces. The level set function is 
expressed in the implicit form of a high-
dimensional function; then, the boundary 
changes are traced by the deformation of this 
function. The design boundaries are changed in 
shape optimization to minimize or maximize an 
objective function. Generally, for a given region 
W  with an arbitrary boundary, we assume an 
implicit function )(xf , as given by 
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To compute an evolving domain, we can define 
the function and determine the evolution of 
domain -W  via 

{ }0),()( <=W- tt xf       (2) 
The boundary )(tG  of  )(t-W is given by the zero 
level set,  
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Figure 1. Distribution of level set function and 
boundary represented by the zero level set( 0=z ), 
where the -W  and +W  regions imply the design 
domain and free space, respectively. 
 
 
The evolution of the shape is determined by the 
velocity V .  
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Since the zero level set holds at any time t , its 
total derivative is expressed using an Eulerian 
formulation and chain rule, as given by 
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This is called the Hamilton-Jacobi equation, 
and the level set function is determined by 
solving it. The velocity V  must be based on 
each objective of the design problem. 

The boundaries of the design domain can be 
expressed by the zero level set using the signed 
distance function and the boolean union function 
min [1,2]. 
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It is appropriate to use the Heaviside function 

to set the material properties of the design region. 
It is difficult to set the properties strictly for the 
boundary in numerical processing, because the 
boundaries can intersect an element. So, we used 
a numerically smeared Heaviside function, as 
shown in Figure 2.  This provides a continuous 
material property distribution near the zero level 
set. Also, it is possible to control the slope of this 
function using the tuning parameter h . 

 

  
      (a)                                       (b) 

Figure 2.  Numerically smeared (a) Heaviside and (b) 
Dirac-Delta functions, for which the function can be 
controlled by the tunable parameter. This is concerned 
with element size. 
 

The material property is determined using (7) 
and is applied to the governing equation of the 
electrostatic or magnetostatic field, as given by 
(9). 
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),(/2 hpV v fr-=Ñ    or   JhpA ),(2 f-=Ñ  (9) 
where p denote the material property of 
electrostatic e  or magnetostatic m . We can 
avoid remeshing the model geometry that is 
changed by moving objects by introducing the 
level set function to the setting of material 
properties. 

The integration of the surface and boundary 
integral are used when we calculate the area of a 
domain or the sensitivity of a boundary. These 
are expressed using the Heaviside function )(fH  
and the Dirac-Delta function )`(fd . 
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3. Velocity field derivation 
 

The total derivative of any objective 
functions in electromagnetic systems can be 
derived in a closed form using the material 
derivative concept of continuum mechanics and 
an adjoint variable technique. First, the 
continuum sensitivity formula of switching 
position A is represented as   

ò G=
g

l dVVG
dt
dF

nAA ),(       (15) 

 



where 
( )[ ]

.

****

0

****
0

)()(1)()(1),( 

r )()()()(1),(

ú
û

ù
ê
ë

é
+÷÷

ø

ö
çç
è

æ -
=

+-=

l
m

l
m

ml

lleeel

nn
r

tt
r

A

ttnnrrA

BABABBAG

oEVEEVEVG

 (16) 
nAV  is the normal component of the velocity 

field vector, l  is an adjoint variable, and g  is a 
design boundary. The sensitivity of switching A 
position represents the relationship between the 
objective function and the velocity field. If the 
velocity field is assumed to be 

),( lVGV AnA =     :  switching A position  (17) 
the system energy will increase, since it is in a 
gradient direction. In addition, if the sensitivity 
of switching B position is chosen as 

),( lVGV BnB -=     :  switching B position (18) 
the system energy will decrease. The velocity 
field is inserted into the level set equation (5) to 
obtain the maximum torque of an 
electromagnetic system. 
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Here, we can see that the optimization 
procedure is transformed into a Hamilton-Jacobi 
equation of a time-domain first-order partial 
differential equation (PDE). The time of the 
above equation does not mean the real physical 
time, but it implies a “pseudo time” in the 
iterative optimization procedure. 
 
4. Optimization problems 
 
4.1 Description of electromagnetic system 
 

Figure 3 shows a design domain for an 
electrostatic actuator structure with 8 electrodes 
around dielectric material represented by the 
gray-colored central region. This is driven by 
switching the voltages in the clockwise direction 
and adjacent electrodes are composed of 
separated segments.  The dielectric material for 
the design domain will be redistributed to 
maximize the objective function in the 
optimization process. The maximum torque is 
generated by the maximum difference of the 
system energy between the two switching 
patterns shown in Figure 3(a) and (b). That is, 
the shape of the dielectric material is optimized 
so that the system energy represented by Figure 
3(a) is maximized and that represented by Figure 

3(b) is minimized. Figure 4 shows a design 
domain for the rotor shape and a distribution of 
stator windings for a sinusoidal magnetomotive 
force (MMF) at two positions. The material on 
the design domain is to be redistributed to 
maximize the objective function in the 
optimization process. A maximum torque is 
generated by a maximum difference of the 
system energy between the two positions of 
Figure 4(a) and (b) [8].  

 

 
(a)         (b) 

Figure 3.  Actuator information and voltage switching 
pattern of clockwise rotation. (a) Switching position A 
is used to maximize the system energy and (b) 
switching position B is used to minimize the system 
energy. 
 

        
      (a)                          (b) 

Figure 4. Sinusoidal distributions of stator winding 
and a design domain for a rotor with 4 salient poles. 
(a) Reference position and (b) 45 [deg.] rotated 
position. 
 
4.2 Optimization scheme 

 
The system energy of switching position A 

(or reference position) must be maximized and it 
must be minimized at switching position B (or 
rotated position) to generate the maximum 
torque. That is, the energy difference between 
the two positions is maximized. Therefore, the 
optimization problem in this case can be defined 
as 
Maximize : )( BA WWF -=      (20) 
Subject to )(/2 fer-=Ñ V  or JA )(2 fm-=Ñ    

*)( SdH =WòW f    : constraint of constant area 



where the design domain is represented by W . 
The Poisson equations for electrostatics and 
magnetostatic are used to calculate the electric 
scalar potential V  and the magnetic vector 
potential A .  

The design variables represent the movable 
boundary between the dielectric and free space. 
The design boundary W¶  is represented using the 
level set function such that 

0),( =txf   : zero level set     (21) 
The velocity field determines the shape 

variation. It results in variation of the objective 
function via Poisson's equation. The velocity 
field is modified from  

nV  to 
nV̂  using a Lagrange 

multiplier technique to impose a constraint 
condition of constant volume , such as 

0
ˆ VVV nn -=        (22) 
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Figure 5.  Normal velocity field on the boundary. Its 
value determines boundary shape. 

 
The algorithm of the level set method for 

optimization problem is numerically 
implemented using the finite element method. 
Generally, the finite difference method has been 
used for the time-dependent solution for the level 
set equation. However, we add an artificial 
diffusion term to the level set equation for 
numerical stability and usage of the standard 
finite element method for 2nd order PDE. Thus, 
the level set equation of first order PDE is 
transformed into second order PDE as 

faff 2|| Ñ=Ñ+
¶
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where the coefficient a of the artificial diffusion 
term must be sufficiently small. 
 
5. Numerical examples 
 
5.1 Electrostatic actuator 

 
The difference of the electrostatic system 

energy between the two voltage switching 
positions has to be maximized to generate the 

maximum torque. The numerical results showed 
that the proposed algorithm produced the optimal 
shape and topology of the salient pole actuator 
without prior information of the dielectric layout, 
as shown in Figure 6. The initial shape of the 
actuator is given by the 19 dielectric regions that 
will be topologically modified to generate the 
maximum torque. 

 

     
(a) Switching A                     (b) Switching B 

 

          
(c)                (d) 

Figure 6. Initial shape of electrostatic actuator 
containing 19 dielectric regions. Voltage switching 
position of (a) maximizing and (b) minimizing 
electrostatic energy. Final shapes and equi-potential 
line made by (c) switching A and (d) switching B.  

 

 
Figure 7. Flowchart of proposed algorithm for 
optimization of electrostatic actuator. 

 
Figure 7 summarizes the overall flowchart of 

the proposed algorithm. Figure 8 show the shape 
variations of the dielectric material in the time 
domain where we can see that the design shape 
changes by freely producing various intermediate 
topologies and shapes. Figure 9 shows the 



variation of the electrostatic system energy in the 
iterative optimization procedure. The values 
converge to a maximum after about 2.7 seconds 
of pseudo-time. Figure 10 show the distributions 
of the level set surfaces in the initial and final 
steps, where the level set value is negative in the 
dielectric material and positive in air. In addition, 
computational time and number of iterations are 
about 450 seconds and 370 steps, until the shape 
converged.  
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Figure 8. Optimization procedure of electrostatic 
actuator with material density and zero level set, 
which imply the material boundary. 
 

 
Figure 9. Changes of electrostatic system energy in 
time domain. 

       
(a)                     (b) 

  
Figure 10. Distributions of level set function and zero 
level set at (a) initial shape and (b) converged final 
step. 

5.2 SynRM rotor 
 
The difference of the magnetic system 

energy between two winding positions has to be 
maximized to generate a maximum torque of a 
synchronous reluctance motor. The initial shape 
on the design domain is taken as in Figure 11(a) 
and (b) for the optimal topology design of the 
rotor shape. The initial design consists of 25 
ferromagnetic cylinder bars, which could 
produce any free and arbitrary topology and 
shape and occupies 70% of the area of the design 
domain. The stator winding is set to be 
distributed to make a sinusoidal MMF along the 
air gap as shown in Figure 11(a) and (b). The 
final design of the rotor shape is obtained as in 
Figure 11(c) after the optimization process of the 
coupled system of the level set equation and the 
magnetic field equation is executed. The final 
shape of the rotor is unique and matches our 
predictions of a very symmetric rotor design.  

 

   
(a)                                     (b) 

  
  (c) 

 
Figure 11. 25 ferromagnetic bars on initial rotor 
design domain and two winding models in (a) the 
reference model and (b) the rotated model and (c) the 
final optimized rotor shape with equi-potential line. 

 
Figure 12 shows the shape changing process 

in the time domain, where we can see that the 
design shape changes freely producing various 
intermediate topologies and shapes. Figures 13 
show the distributions of the level set surfaces of 
the initial and the final steps, where its value is 
positive in the ferromagnetic material and 
negative in air.  
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Figure 12. Optimization procedure of 4 pole rotor for 
synchronous reluctance motor with material density 
and zero level set. 

   

     

(a)                                   (b) 
Figure 13. Distributions of level set functions at (a) 
initial shape and (b) converged final step. Here 
material regions are set as positive value of the 
function 

 
6. Conclusion 

 
We presented the theoretical algorithm and 

numerical techniques for topology optimization 
of an electromagnetic system to generate the 
maximum torque using the level set method and 
design sensitivity analysis. The objective 
function for the maximum torque is defined as 
the difference of the system energy with respect 
to the two switching and winding positions. 
Numerical results showed that the level set 
method coupled with the finite element method 
of the electric and magnetic field is a feasible 
and effective method to design the shape and 
topology of an electrostatic and magnetostatic 
system. From numerical analysis of view, this 
work has some advantages as follow: (1) 
Because the level set and field equations are 
solved using finite element code without remesh 
step for changing shapes, its computational 
efficiency is not only better than existing 

technique and it is but also more convenient to 
apply to the standard finite element analysis. (2) 
Since the shape design sensitivity of analytical 
form is employed for the normal velocity term of 
the level set equation, the optimization process is 
numerically accurate. (3) In the level set method 
the design shape is easily and efficiently 
calculated using the level set function of high 
order implicit form, whereas the conventional 
design techniques require definition of design 
parameters that are complicated and depends on 
the geometry of a given problem. (4) Because the 
shape and topology can be freely changed during 
the optimization procedure, the design domain is 
larger. Also, we think that optimization with the 
level set method better tends to converge to the 
global minimum.  
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