

The convergence of research and innovation.

Presented at the 2011 COMSOL Conference

Study of AC electrothermal Fluid Flow Models

Sophie Loire

Paul Kauffmann, Igor Mezić

Department of Mechanical Engineering, University of California, Santa Barbara

Motivation: Microfluidic manipulation

Caliper's LabChip for DNA & protein analysis

Mixing improves reaction rates

- Fully integrated lab on chip
- Mixing, concentration, pumping, separation of fluids and particles in microchannels
- Example: Mixing for bioassays

goal: Improve reaction rate in traditional and microarray biosensors via mixing.

UC SANTA BARBARA

engineering

Motivation: Microfluidic manipulation

- <u>Solution:</u> Integrated electrodes generating AC electrothermal mixing
- Electrothermal force:

interaction of gradients in conductivity and permittivity (produced by Joule Heating) with electric field

Advantages:

- Easy integration
- AC=>avoid electrolysis
- Effective for high conductivity solutions

rates

Outline

UC SANTA BARBARA

- Standard numerical model for ACET
- Experimental discrepancy for high conductivity
- Solution: strong thermo-electric coupling using Comsol software
- Results
- Conclusion and Future works

Standard numerical model for ETF

[1] A. Castellanos, A. Ramos, A. Gonzales, N. G. Green, and H. Morgan, Electrohydrodynamics and dielectrophoresis in microsystems: scaling law, *Journal of Physics D: Applied Physics*, vol. 36, pp. 2584–2597 (2003).

- Electric Field
- $$\begin{split} \mathbf{E} &= \mathbf{E}_0 + \mathbf{E}_1, \text{ with } \mathbf{E}_1 \ll \mathbf{E}_0 \\ \nabla \mathbf{E_0} &= 0 \end{split}$$
- Temperature Field

$$k_m \nabla^2 T + \frac{\sigma_m}{2} |\mathbf{E}_0|^2 = 0$$

Electrothermal Body Force

$$<\mathbf{F}_{ET}> = 0.5\varepsilon_m \left[\left(\frac{1}{\varepsilon_m} \left(\frac{\partial \varepsilon_m}{\partial T} \right) - \frac{1}{\sigma_m} \left(\frac{\partial \sigma_m}{\partial T} \right) \right) \frac{\nabla T \cdot \mathbf{E_0}}{1 + (\omega \tau)^2} \mathbf{E_0} - \frac{0.5}{\varepsilon_m} \left(\frac{\partial \varepsilon_m}{\partial T} \right) \nabla T |\mathbf{E_0}|^2 \right]$$

• Fluid velocity Field

$$\mu_m \nabla^2 \mathbf{u} + \langle \mathbf{F}_{\mathbf{ET}} \rangle = \nabla P$$

🕥 UC SANTA BARBARA

engineering

Standard numerical model for ETF

Estimation of velocity amplitude voltage dependence

$$\begin{split} k_m \nabla^2 T + \frac{\sigma_m}{2} |\mathbf{E}_0|^2 &= 0 \quad \text{=> Temperature: } \Delta \mathsf{T} \sim \mathsf{V}^2 \\ \mu_m \nabla^2 \mathbf{u} + \langle \mathbf{F}_{\mathbf{ET}} \rangle &= \nabla P \quad \text{=> Velocity:} \quad \mathsf{u} \sim \langle \mathbf{F}_{\mathbf{ET}} \rangle \\ \langle \mathbf{F}_{ET} \rangle &= 0.5 \varepsilon_m \left[\left(\frac{1}{\varepsilon_m} \left(\frac{\partial \varepsilon_m}{\partial T} \right) - \frac{1}{\sigma_m} \left(\frac{\partial \sigma_m}{\partial T} \right) \right) \frac{\nabla T \cdot \mathbf{E}_0}{1 + (\omega \tau)^2} \mathbf{E}_0 - \frac{0.5}{\varepsilon_m} \left(\frac{\partial \varepsilon_m}{\partial T} \right) \nabla T |\mathbf{E}_0|^2 \right] \\ &= \mathsf{v} \mathbf{u} \sim \Delta \mathsf{T} \mathsf{E}^2 \end{split}$$

Experimental Setup:

Comsol Implementation

Mezić Research Group Dynamical Systems and Nonlinear Control Theory

Comsol Implementation

🕥 UC SANTA BARBARA

engineering

Standard numerical model for ETF

Estimation of velocity amplitude voltage dependence

$$\begin{split} k_m \nabla^2 T + \frac{\sigma_m}{2} |\mathbf{E}_0|^2 &= 0 \quad \text{=> Temperature: } \Delta \mathsf{T} \sim \mathsf{V}^2 \\ \mu_m \nabla^2 \mathbf{u} + \langle \mathbf{F}_{\mathbf{ET}} \rangle &= \nabla P \quad \text{=> Velocity:} \quad \mathsf{u} \sim \langle \mathbf{F}_{\mathbf{ET}} \rangle \\ \langle \mathbf{F}_{ET} \rangle &= 0.5 \varepsilon_m \left[\left(\frac{1}{\varepsilon_m} \left(\frac{\partial \varepsilon_m}{\partial T} \right) - \frac{1}{\sigma_m} \left(\frac{\partial \sigma_m}{\partial T} \right) \right) \frac{\nabla T \cdot \mathbf{E}_0}{1 + (\omega \tau)^2} \mathbf{E}_0 - \frac{0.5}{\varepsilon_m} \left(\frac{\partial \varepsilon_m}{\partial T} \right) \nabla T |\mathbf{E}_0|^2 \right] \\ &= \mathsf{v} \mathbf{u} \sim \Delta \mathsf{T} \mathsf{E}^2 \end{split}$$

UC SANTA BARBARA

enaineerina

Experimental discrepancy

Experimental discrepancy: For high conductivity v~V⁵

Strong Thermo-Electric Coupling

Solution:

1. Remove small perturbed field simplification

2. $\sigma_m = \sigma_m(T)$, $k_m = k_m(T)$, $\mu_m = \mu_m(T)$

Low temperature gradient Standard theory

High temperature gradient Strong thermo-electric coupling "

$$\omega\tau\ll 1$$

$$E = E_0 + E_1, with |E_1| \ll |E_0|$$
$$E_0 = -\nabla V$$

$$\begin{cases} \nabla^2 V = \mathbf{0} \\ \nabla \cdot (k_m \, \nabla T) + \frac{\sigma_m}{2} |\mathbf{E}|^2 = 0 \\ -\nabla P + \nabla \cdot (\mu_m \nabla u) + \mathbf{F}_{ET} = \mathbf{0} \end{cases}$$

$$\nabla E_{R} = -\frac{1}{\sigma_{m}} \frac{\partial \sigma_{m}}{\partial T} \nabla T. E_{R}, \quad E_{I} = 0$$

$$\begin{cases} \nabla^{2} V = -\frac{1}{\sigma_{m}} \frac{\partial \sigma_{m}}{\partial T} \nabla T. \nabla V \\ \nabla . \left(k_{m}(T) \nabla T \right) + \frac{\sigma_{m}(T)}{2} |E|^{2} = 0 \\ -\nabla P + \nabla . \left(\mu_{m}(T) \nabla u \right) + F_{ET} = 0 \end{cases}$$

Mezić Research Group Dynamical Systems and Nonlinear Control Theory

The convergence of research and innovation.

 $\nabla^2 V = \beta \cdot \nabla V$

Result: advection of E-field by conductivity gradient

Results:

Conclusion

Strong thermo-electric coupling and Temperature dependent expression of parameters

are necessary to correctly model ACET at high gradient of temperature.

Future Works

- Include buoyancy to the model.
- Check for which parameters buoyancy is NOT negligeable.