

DESIGN AND ANALYSIS OF IMPLANTABLE NANOTUBE BASED SENSOR FOR CONTINUOUS BLOOD PRESSURE MONITORING

Silambarasan.M Prem kumar.T Alagappan.M Anju.G PSG College of Technology Coimbatore-641004

Objective

 Design and Analysis of Implantable nanotube based sensor for continuous blood pressure monitoring - sensitivity

Introduction

- Blood pressure- force which is exerted by the blood on the walls of the blood vessels
- BP-expressed Systolic/diastolic (120/80)(mmHg)
- Sphygmomanometer common device
- Continuous monitoring kidney failure, stroke affected person
- Using nanotube based sensor

Structural design

- Base polyurethane
- Nanotube One end fixed- other end suspended
- Nanotube has the high young's modulus and high tensile strength
- Act as advantage

Working

- Blood flow
- Deflection
- Making a reference point for normal BP
- Displacement of the nanotube greater or smaller compare to the reference

Design parameters

- Length
- Thickness
- Material

Simulation and Analysis

- Physics applied solid mechanics
- By varying the parameter results can be analysed

Effect of change in length

• Thickness- 50 nm, material – carbon, pressure-16 Kpa

Effects of change in length on sensor performance

Effect of change in thickness

Length – 6 μm , material – carbon, pressure-16 Kpa

Effects of change in thickness on sensor performance

Effect of change in material

Length – 6 μm , thickness- 50 nm, pressure-16 Kpa

Effects of change in material on sensor performance

Result

• Length – 6 μ m , thickness- 50 nm, material- carbon

pressure (mmHg)	displacement(nm)	pressure(Kpa)
80	0.26547	11
90	0.28961	12
120	0.38615	13
140	0.45855	14
150	0.48268	15

Pressure vs displacement

Results of simulation

Contd...

Graphical representation of displacement of the nanotube corresponding to the applied pressure

Conclusion

- Material gold shows high sensitivity
- Material biocompatible
- Functionalize

Reference

- Carolyn R. Bertozzi, Biocompatible Carbon Nanotubes Generated by Functionalization with Glycodendrimers, *Angew. Chem. Int. Ed.*, vol 47, 5022 – 5025, (2008)
- Magic Gold Nanotubes, R.Tugrul, Turk J Phys, 29, 269 276, (2005)
- M.Friak, Ab initio calculation of tensile strength in iron, *Philosophical Magazine*, Vol. 83, Nos. 31– 34, 3529–3537, (2003)
- 4. A.Mechanical properties of carbon nanotubes, J.P. Salvetat, *Applied physics*, A 69, 255–260 (1999)

Acknowledgement

- P.S.G College of Technology
- **Dr. A. Kandaswamy**, HOD, Department of Biomedical Engineering
- Mrs. Nithya, Lab Assistant, Department of Biomedical Engineering
- Mr. Aravindh, Mr.Dinesh, Research Scholars, PSG IAS
- **Dr.N.N. karthik**, Bilroth hospital, Chennai
- Mr. Bala, M.Tech Scholar, PSG CT

Thank you