How to Analyze Beam Sections Using the Beam Section Calculator

Rémi Magnard February 28, 2017

When modeling a structure with beam elements, we don’t use the actual 3D geometry. Instead, we use a line model, which represents the other two dimensions through defining a set of cross-section properties. With the Beam Section Calculator simulation app, we can easily find the properties for a wide range of beam sections from European and American standards. The app also makes it simple to accurately compute the stress distribution for a given set of applied moments and forces.

Analyzing Novel Roof Tile Designs with Multiphysics Simulation

Caty Fairclough February 23, 2017

Maintaining cool temperatures in buildings is necessary to keep people comfortable, particularly for those living in hot climates. For houses that aren’t optimized for thermal performance, cooling requires large amounts of energy and money. To reduce these costs, researchers from the University of Ferrara, Italy looked to improve roofs as part of the Life HEROTILE project. To accomplish this, they modeled novel roof tiles that are designed to increase air permeability and lower cooling costs.

Using the Discontinuous Galerkin Method to Model Linear Ultrasound

Mads Herring Jensen January 26, 2017

Modeling acoustically large problems requires a memory-efficient approach like the discontinuous Galerkin method. To make solving these types of problems easier, we’ve added a new physics interface based on this method to the Acoustics Module: the Convected Wave Equation, Time Explicit interface. It can include a stationary background flow and is suited for modeling linear ultrasound applications. Today, we will explore how to use this interface with the example of an ultrasound flow meter.

Finding the Best Coal Arrangement for Even Heat in a Grill

Magnus Ringh January 25, 2017

Even if the barbecue season has not started yet in many parts of the Northern Hemisphere, there is always time to think about how to improve your grilling skills. In this blog post, we show how to use the COMSOL Multiphysics® software to determine the best way to arrange the coals or briquettes in a charcoal grill for even heat and to avoid hot spots. Even heat is required when making a grilled pizza, for example.

Keynote Video: Solving 2 Transport Process Problems with Simulation

Caty Fairclough January 19, 2017

For those looking to solve complex transport process problems involving photonics and microfluidics, it can be challenging to account for all of the elements involved, including multiple physics phenomena. However, this is necessary for accurate results. By using multiphysics simulation, Carl Meinhart from the University of California, Santa Barbara and Numerical Design, Inc. accurately modeled transport processes in two application areas: high-frequency acoustics and microfluidic valves. Watch his keynote talk from the COMSOL Conference 2016 Boston to get the details.

Keynote Video: Locating Leaks in Pipe Networks with a Simulation App

Bridget Paulus January 16, 2017

When a pipe springs a leak, it’s important to find its location with a quick and accurate method. Engineers at Echologics — a Mueller Technologies Company — use a combination of acoustic sensors and simulation applications to pinpoint such leaks. Sebastien Perrier of Echologics discussed the benefits of this approach and gave a live demonstration of an acoustics modeling app during his keynote talk at the COMSOL Conference 2016 Boston. If you missed Sebastien’s presentation, you can watch it below.

How to Model an Anechoic Coating

Dolphins and bats have relied on echolocation for millions of years. Yet, it would take until the early 1900s before humans first developed and used sonar. Not long after came the first countermeasure: the anechoic coating. Today, we’ll look at how you can model the reduction in echo that this provides using COMSOL Multiphysics®. Similar modeling techniques can also be used for other periodic structures, such as perforates, phononic crystals, and various sound absorbers.

Perform Rotordynamic Analyses of a Reciprocating Engine’s Crankshaft

Bridget Cunningham January 2, 2017

When a reciprocating engine’s crankshaft is under rotation, self-excited vibrations occur. These vibrations result from the eccentricity of the crank pin and balance masses on the mechanical part. Here, we’ll accurately study the response of the rotors and the orbits of the mass balances on the shaft with the Rotordynamics Module, a new add-on product to the COMSOL Multiphysics® software and Structural Mechanics Module. From these results, you can improve a crankshaft’s design to reduce vibrations, while optimizing engine performance.

Simulation Delivers Reliable Results for Piezoresistive Pressure Sensors

Bridget Cunningham December 26, 2016

Designing MEMS devices, such as piezoresistive pressure sensors, comes with challenges. For instance, accurately describing the operation of these devices requires the integration of various physics. With the COMSOL Multiphysics® software, you can easily couple multiphysics simulations in order to test a device’s performance and generate reliable results. Today, we’ll look at one example that showcases such capabilities.

Introduction to Modeling Natural Convection in COMSOL Multiphysics®

Ed Fontes December 23, 2016

Natural convection is a phenomenon found in many science and engineering applications, such as electronics cooling, indoor climate systems, and environmental transport problems. The CFD and Heat Transfer modules in version 5.2a of the COMSOL Multiphysics® software include functionality that makes it easier to set up and solve natural convection problems. In this blog post, we give an overview of natural convection, the new functionality, and some of the difficulties that we may stumble upon when modeling natural convection.

Optimize 3D Printers by Modeling the Glass-Transition Temperature

Caty Fairclough December 22, 2016

In 3D printers, suboptimal cooling and cure rates can negatively affect the manufactured parts and components. By optimizing a 3D printer’s design, we can ensure the quality of the printed objects. One research group used simulation to analyze the cooling process and the resulting glass-transition temperature of the polymer in a 3D printer. Let’s look at how they modeled the extrusion of acrylonitrile butadiene styrene (ABS) from a 3D printer that uses fused-deposition modeling (FDM®).