Part 1: How to Model a Linear Electromagnetic Plunger

Nirmal Paudel | June 7, 2016

An electromagnetic plunger is an electromechanical device that converts electrical energy into a linear mechanical motion. This motion can be used to move an external load such as closing electromagnetic valves and closing or opening electromagnetic relays. In this blog post, we introduce a procedure to model the behavior and dynamics of an electromagnetic plunger that consists of a multi-turn coil, magnetic core, nonmagnetic guider, and magnetic plunger.

Read More

Categories

Bridget Cunningham | June 6, 2016

When designing a device or process, it is important to not only study the system itself, but to also account for the effects of the environment around it. Historical weather data can help to address such effects by offering deeper insight into the weather patterns across different locations and time frames. Take a closer look at how such data can foster better design decisions, with a particular emphasis on its benefits within heat transfer modeling.

Read More

Jiyoun Munn | June 1, 2016

The 5G mobile network and Internet of Things (IoT) are two hot topics in the RF and microwave industry. New developments in these wireless applications call for much higher data rates, active electronically scanned arrays (AESA), phased array antennas, and multiple-input-multiple-output (MIMO) technology. It is important to reduce the time and cost during the process of prototyping and manufacturing these applications. Using simulation and apps, we can streamline the development cycle of wireless communication designs.

Read More

Yosuke Mizuyama | May 30, 2016

In a previous blog post, we discussed simulating focused laser beams for holographic data storage. In a more specific example, an electromagnetic wave focused by a Fourier lens is given by Fourier transforming the electromagnetic field amplitude at the lens entrance. Let’s see how to perform this integral type of preprocessing and postprocessing in COMSOL Multiphysics with a Fraunhofer diffraction example.

Read More

Bernt Nilsson | May 25, 2016

Every year, the COMSOL Conference makes several stops around the world, bringing together the COMSOL community for a chance to connect, learn, and innovate. The COMSOL Conference 2016 promises to deliver these same elements, with additional learning opportunities available. Learn more about what to expect at this year’s conference, while hearing about the experiences of some of our past attendees.

Read More

Categories

Bridget Cunningham | May 23, 2016

In various engineering fields, studying acoustic reflection and absorption is an important point of consideration. Simulation is a valuable tool for performing such analyses, helping to better explain how sound waves interact with their surrounding surfaces. Today, we’ll look at how the Application Builder is extending the reach of such simulation capabilities by using the example of acoustic reflections off a water-sediment interface.

Read More

Caty Fairclough | June 2, 2016

When designing motorcycles, noise reduction is a primary area of concern. Loud, poorly designed motorcycles may not meet noise regulations or satisfy customers. As such, there is a need to reduce motorcycle noise by identifying and eliminating its sources. To do so, researchers at Mahindra Two Wheelers, Ltd. turned to acoustics simulation.

Read More

Categories

Brianne Costa | May 31, 2016

Reservoirs, dams, and other outdoor structures need to be strong, reliable, and sound. The porous materials found within these structures can be easily damaged by pressure changes that cause fluid flow and gradual caving and sinking. Using the multiphysics simulation capabilities of COMSOL Multiphysics and the Poroelasticity interface, we can accurately analyze porous materials to evaluate and avoid deformation in such structures.

Read More

Andrew Strikwerda | May 26, 2016

It is always important to choose the correct tool for the job, and choosing the correct interface for high-frequency electromagnetic simulations is no different. In this blog post, we take a simple example of a plane wave incident upon a dielectric slab in air and solve it in two different ways to highlight the practical differences and relative advantages of the Electromagnetic Waves, Frequency Domain interface and the Electromagnetic Waves, Beam Envelopes interface.

Read More

Caty Fairclough | May 24, 2016

The magnetostrictive effect causes magnetic materials to change their shape when a magnetic field is applied. Materials that exhibit such behavior are used in a range of devices, from loudspeakers to actuators. In order to analyze one type of device, a magnetostrictive transducer, researchers from ETREMA Products, Inc. performed single-physics and multiphysics simulation studies in COMSOL Multiphysics. See how the flexible nature of the software enabled the team to study various aspects of the device and optimize its overall design.

Read More

Nandita Roche | May 19, 2016

Maximizing the efficiency of the learning process, while keeping students engaged — this is the common goal that professors hope to achieve in any course. In the realm of physics- and engineering-based courses, simulation apps are helping to strike such a balance by introducing students to complex concepts in a simplified format. Here, we’ll take a look at some of the innovative ways that university professors are utilizing apps within the classroom.

Read More

1 3 4 5 6 7 105