The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Atmospheric Corrosion

This model simulates atmospheric galvanic corrosion of an aluminum alloy in contact with steel. The electrolyte film thickness depends on the relative humidity of the surrounding air and the salt load density of NaCl crystals on the metal surface. Empirical expressions for the oxygen diffusivity and solubility are also included in the model in order to derive an expression for the limiting ...

Generalized Kelvin Viscoelastic Material

The behavior of viscoelastic materials can be represented by conceptual models composed of elastic and viscous elements connected in series or in parallel. The rheology of the generalized Kelvin model (also called generalized Kelvin-Voigt model) consists of an elastic spring to represent the instantaneous stiffness plus n Kelvin-Voigt branches connected in series. This example shows how to ...

Electrocoating of a Car Door

This example models electrocoating of paint onto a car door in a time-dependent simulation. The deposited paint is highly resistive which results in lowered local deposition rates for coated areas. A primary current distribution in combination with a film resistance model is used to describe the charge transport in the electrolyte. The model is in 3D and uses an imported CAD geometry.

Transfer Impedance of a Perforate

Perforates are plates with a distribution of small perforations or holes. They are used in muffler systems, sound absorbing panels, and in many other places as liners, where it is important to control attenuation precisely. As the perforations become smaller and smaller, viscous and thermal losses become more important. The attenuation behavior, which is also frequency dependent, can be ...

Galvanic Corrosion of a Magnesium Alloy in Contact with Steel

Magnesium alloys are attractive alternatives as lightweight materials in various fields of engineering. Magnesium is however relatively non-noble and may suffer considerable galvanic corrosion when being used in conjunction with other metals, for instance when mounting an Mg alloy component using steel fasteners. This model example simulates a galvanic corrosion couple consisting of a magnesium ...

Pressurized Orthotropic Container

A thin-walled container made of rolled steel is subjected to an internal overpressure. As an effect of the manufacturing method, one of the three material principal directions—the out-of- plane direction— has a higher yield stress than the other two. Hill’s orthotropic plasticity is used to model the difference in yield strength. The example also shows how to define and use curvilinear ...

Motion of Trapped Protons in Earth's Magnetic Field

This model demonstrates the path of non-relativistic protons within Earth's magnetic field. Due to the dipole nature of Earth's magnetic field, charged particles, such as electrons and protons, can get trapped in stable configurations within it for long periods of time. These configurations involve the particles rapidly bouncing from magnetic pole to magnetic pole, and drifting around the ...

Walking Instability in a Washing Machine

Walking instability, due to non-uniform distribution of clothes, is a common problem in lightweight portable washing machines. This problem is more severe in horizontal-axis washing machines, which are more popular because of their high efficiency in spite of high manufacturing cost. This model simulates a simplified model of a horizontal-axis portable washing machine and predicts the verge of ...

Poroelastic Waves with Thermal and Viscous Losses (Biot-Allard Model)

In applications where pressure waves and elastic waves propagate in porous materials filled with air both thermal and viscous losses are important. This is typically the case in insulation materials for room acoustics or lining materials in car cabins. Another example is porous materials in mufflers in the automotive industry. In many cases these materials can be modeled using the Poroacoustic ...

Designing a Waveguide Diplexer for the 5G Mobile Network

A diplexer is a device that combines or splits signals into two different frequency bands, widely used in mobile communication systems. This model simulates splitting properties using a simplified 2D geometry. The computed S-parameters and electric fields at the lower and upper bands will show the diplexer characteristics in the Ka-band.