

Fluid Flow and Current Density Distribution in Large-Area HT PEMFCs

G. Bandlamudi, C. Siegel, C. Heßke, A. Heinzel

ZBT GmbH Carl-Benz-Straße 201 47057 Duisburg Germany

Telefon: +49-203-7598 1632 Telefax: +49-203-7598 2222 www.zbt-duisburg.de g.bandlamudi@zbt-duisburg.de

- 1. Introduction to HT PEMFCs
- 2. Fluid flow and current density issues specific to HT PEMFCs
- 3. Approaches to studying large area fuel cells
- 4. Experimental investigations with large area HT PEMFCs
- 5. Modeling approach
- 6. Conclusions

Inter desets to LIT DEMEO

bon particles

ii) Operational: Catalyst utilization, fuel/oxidant efficiency

2. Performance limiting processes: Fluid Flow & Current Density

4. Large area HT PEMFC – Experimental investigations

- Cell's active area: 300 cm²
- Total geometrical area: 503 cm²
- BPHP: Graphite compound

Z B HT PEMFC – current voltage curves

Pressure drop (Cathode): 2.4 kPa

Large area HT PEMFC: Cell facts and performance loss break-up

•	σ (Membrane)	= 0.08 S/cm
•	Catalyst	= 1 mg/cm ²
•	σ (Flow field plate)	= 50 S/cm
•	HFR (Cell)	= 423 mΩ·cm² (160°C)
		= 416 mΩ·cm² (180°C)
•	Ohmic loss	= 140 mV (330 mA/cm²)
•	Activation loss	= 206 mV
•	Cell voltage	= 520 mV
•	Fuel transport	= 146 mV

5. Modeling approach: 3D computational geometry

2D geometry in x-y-plane (CAD file) \rightarrow extrude in z-direction (3D) geometry

24 channel parallel serpentine flow field

 \rightarrow (two 'blocks')

Application modes in the 'batteries and fuel cells module' (V4.2.0.187)

Boundary conditions according to experimental set-up

- Initial conditions generated with several 'dummy' simulations
- Number of degrees of freedom: ca. 20 million (19,692,625)
- \rightarrow Highly coupled system to be solved together with boundary and initial conditions

*see: Siegel, C., Bandlamudi, G., Heinzel, A, A Systematic Characterization of a PBI/H3PO4 Sol-Gel Membrane – Modeling and Simulation, *J. Power Sources*, **196**, 2735-2749 (2010)

Manual mesh generation \rightarrow different mesh levels generated Level 1: 2,190,900 Elements Level 2: 1,402,404 Elements (Reference Level 1 / Scale 1.3) Inlet boundary

Different solvers used for different solution steps

- \rightarrow cathode and anode side (momentum/mass)
- \rightarrow anode and cathode side (species/charge)
- \rightarrow anode and cathode side (temperature 2x)

Hardware:16-core machine with a total of 144 GB RAM

Optionen Ansicht ?		
endungen Prozesse Dienste	Leistung Netzwerk Benutzer	
CPU-Auslastung	CPU-Auslastung	
	18 MB 7/2 28 MB 7/2 28 29 1	
	12 MR ME 28 MB MB 28 28 1	
5%		
whoitespeicher a Waswand un	anuarlauf dan abusikal. Engichara	
verwendun	gsvenaut des priysikal, speichers	
7,95 СВ		
7,96 GB		
7,96 GB	System	
7,95 GB	System Handles 23078	
7,95 GB	System Handles 23078 Threads 609	
7,96 GB hysikalischer Speicher (MB) nsgesamt 139254 m Cache 19150 crfugbar 131102	System Handles 23078 Threads 609 Prozesse 42	
7,96 GB hysikalischer Speicher (MB) nsgesamt 139254 m Cache 19150 erfügbar 131102 rei 111959	System Handles 23078 Threads 609 Prozesse 42 Laufzeit 68:23:40:26	
7,96 GB Physikalischer Speicher (MB) nsgesamt 139254 m Cache 19150 (erfügbar 131102 rrei 111959	System Handles 23078 Threads 609 Prozesse 42 Laufzeit 68:23:40:26 Zugesichert (GB) 10/369	
7,96 GB Physikalischer Speicher (MB) nsgesamt 139254 m Cache 19150 (erfügbar 131102 Frei 111959 Cernel-Speicher (MB)	System Handles 23078 Threads 609 Prozesse 42 Laufzeit 68:23:40:26 Zugesichert (GB) 10/369	
7,95 GB Physikalischer Speicher (MB) msgesamt 139254 m Cache 19150 /erfügbar 131102 rrei 111959 Cernel-Speicher (MB) Ausgelagert 169	System Handles 23078 Threads 609 Prozesse 42 Laufzeit 68:23:40:26 Zugesichert (GB) 10/369	

Cathode side fluid flow (slice plot and arrow plot in x-y-plane)

Operating conditions: 120 A, cell voltage U = 0.6 V, $Ts = 160^{\circ}$ C, $Tf = 21^{\circ}$ C, H_2 /air operation

Cathode side pressure losses (line-plot)

Operating conditions: 120 A, cell voltage U = 0.6 V, $Ts = 160^{\circ}$ C, $Tf = 21^{\circ}$ C, H₂/air operation

Cathode side mass fractions in 2D x-y-plane

Operating conditions: 120 A, cell voltage U = 0.6 V, $Ts = 160^{\circ}$ C, $Tf = 21^{\circ}$ C, H_2 /air operation

Current density distribution in 2D x-y-plane (with height expression) and line-plot

Operating conditions: 120 A, cell voltage U = 0.6 V, $Ts = 160^{\circ}$ C, $Tf = 21^{\circ}$ C, H₂/air operation

Temperature distribution in 2D x-y-plane

Operating conditions: 120 A, cell voltage U = 0.6 V, $Ts = 160^{\circ}$ C, $Tf = 21^{\circ}$ C, H₂/air operation

Conclusions:

In large area HT-PEMFCs,

- Fuel cell simulations with 300-400 cm² MEA possible with adequate hardware (full 3D geometry with 20 million DOF)
- Flooded electrodes, low Pt-utilization, local O_2 PP dictates performance (CD, Δ P)
- EIS behaviour is different from small area HT PEMFCs (Mass transport dominates)
- Gradients: T, P, variations in local profiles of oxidant and fuel PP are large.

Outlook:

- Validation of the modeling approach
- EIS simulations (currently under investigation)
- Iterative update of the current flow field layout
- Fuel cell stack layout