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Abstract: The long-term time evolution of the 
mean surface temperature of the most critical 
BHE, for BHE fields with arbitrarily given 
monthly heat loads and no groundwater flow, is 
studied by means of finite-element computations 
performed through COMSOL Multiphysics and 
the superposition of effects. A unit step heat 
load, with duration of one month, is considered, 
and its effects are evaluated. Then, the effects of 
any periodic heat load with a period of one year 
and given monthly heat loads can be obtained by 
a weighted sum of the effects of the unit step 
heat load, properly displaced in time. The result 
of the computations is a set of dimensionless 
equations that, properly superimposed, yield the 
time evolution of the dimensionless temperature 
at the interface between the most critical BHE 
and the ground, for a period of 50 years, for 
several typical configurations of BHE fields.  
 
Keywords: Borehole Heat Exchanger (BHE) 
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1. Introduction 
 

In order to reduce the use of fossil fuels and 
its environmental effects, ground coupled heat 
pumps are becoming an important technology for 
building heating and cooling, and are widely 
studied in the literature. The heat exchangers 
with the ground can be either horizontal or 
vertical. The vertical heat exchangers, called 
Borehole Heat Exchangers (BHEs), are usually 
composed of a drilled hole where either a single 
polyethylene U-tube or two U-tubes are inserted; 
water or a mixture of water and glycol flows in 
the tubes. The hole is then sealed by a proper 
grout. BHEs can also be composed of two 
coaxial tubes, namely an outer tube, usually 
made of steel, and an inner polyethylene tube. 

The design of a BHE field is usually 
performed by employing the method developed 
by Kavanaugh and Rafferty [1] and 
recommended by ASHRAE [2]. This method 
refers to a period of 10 years and does not 
consider any groundwater movement. Therefore, 

it cannot ensure the long-term sustainability of 
BHE fields with unbalanced seasonal loads, or 
take into account the effects of the groundwater 
movement on the long-term sustainability. 

For a single BHE with completely 
unbalanced seasonal loads, the long-term 
sustainability has been verified both 
experimentally and theoretically, even in the 
absence of groundwater movement [3, 4]. Other 
studies [5, 6] have shown that medium or large 
BHE fields with unbalanced seasonal loads, in 
the absence of groundwater movement, can reach 
a critical condition in a few decades. 

Chiasson, Rees and Spitler [7] presented a 
first analysis of the effects of groundwater flow 
on a single BHE and on a BHE field, showing 
that a speed of 60 m / year, typical for a coarse 
sand, may have considerable effects in the long 
term sustainability, while higher speeds are 
required to influence the effective thermal 
conductivity of the soil. Zanchini, Lazzari and 
Priarone [8] recently studied the effects of 
groundwater movement on large BHE fields, by 
considering the limiting case of infinite BHEs 
placed in a single line, in a double line or in a 
quadruple line, and showed that even a very slow 
groundwater flow can ensure the long term 
sustainability of large BHE fields. 

Although large BHE fields with completely 
(or nearly completely) unbalanced seasonal heat 
loads must be avoided, because they should be 
shut down after some decades [6, 8], small or 
medium BHE fields with partially balanced 
seasonal loads appear as feasible, even in the 
absence of groundwater movement. For these 
fields, the ASHRAE design method does not 
ensure the long term sustainability and 
alternative design methods are required. 

In this paper, a method to evaluate the long 
term performance of BHE fields with unbalanced 
seasonal heat loads and no groundwater 
movement is presented. This method allows to 
determine, for a period of 50 years, the mean 
temperature of the interface between the most 
critical BHE and the ground, with reference to 
any BHE field, subjected to a time periodic heat 
load with a period of one year and arbitrarily 

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan



 

 

given monthly heat loads. The method is based 
on the time superposition of twelve constant heat 
loads with duration of one month each. The 
design of a BHE field requires also the analysis 
of the effects of the hourly peak loads, which can 
be performed by a method already available 
(although with a different definition of the 
Fourier number) in Ref. [8]. The results are 
given in dimensionless form, as tables of 
coefficients of two equations, and can be quickly 
implemented in Excel. 
 
2. Governing equations and numerical 
modeling 
 

Let us consider a BHE field subjected to a 
heat load slowly variable in time, so that the heat 
capacity of each BHE is not relevant. 
Accordingly, the time evolution of the mean 
temperature of the surface between a BHE and 
the ground can be evaluated by replacing the real 
BHE by a cylindrical heat source, with the same 
diameter as the BHE. Then, let us consider the 
ground as an infinite solid medium with constant 
thermo-physical properties, where no 
groundwater movement takes place. Moreover, if 
one neglects the axial temperature gradient, the 
heat transfer problem becomes 2D and each BHE 
in the field can be sketched as a circular heat 
source in an infinite solid medium. Finally, let us 
study only one BHE: the temperature changes in 
the ground due to the surrounding BHEs will be 
evaluated by applying the superposition of 
effects in space. 

Let us adopt a Cartesian reference frame 
centered in the axis of the BHE and a square 
computational domain around the BHE, with a 
side equal to 2000 times the BHE diameter D.  

At the initial instant of time,  = 0, the 
temperature T is uniform and equal to the 
undisturbed ground temperature, Tg. For  > 0, a 
uniform heat flux per unit area is applied to the 
boundary surface between BHE and ground, 
given by 
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where Q0 is the highest (lowest if negative) heat 
flux per unit length applied to the BHE and F( ) 
is a dimensionless function of time; Q0 is 

positive if heat is supplied to the ground 
(summer operation).  

The differential equation to be solved is 
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where αg is the thermal diffusivity of the ground. 
The boundary condition at the surface SB 
between BHE and ground is 
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where n is the outward unit normal; the external 
boundary of the computational domain is 
considered as adiabatic. By introducing the 
dimensionless operator * D    and the 

dimensionless quantities 
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one can rewrite Eqs. (2) and (3) in the following 
dimensionless form: 
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Obviously, the dimensionless initial condition is 
T * = 0 in the whole computational domain.  

A BHE field is used together with a heat 
pump for the yearly air-conditioning of a 
building. Thus, with a good approximation, the 
BHEs are subjected to a time periodic heat load, 
with a period 0 = 1 year, that accounts for the 
thermal energy that has to be exchanged with the 
ground during the year to help maintaining the 
desired air conditions inside the building. 
Typically, the evaluation of this thermal energy 
is made on a monthly basis.  

According to this interpretation and with 
reference to Fig.1, let us assume that F( ) is a 
unit step function with a duration of one month, 
which is given by the following sum of two 
Heaviside step functions: 
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where 1 = 1 month. By a time superposition of 
twelve functions like F( ), each of them shifted 
forth by 1 and properly weighted, one obtains a 
dimensionless heat load having a duration of 
0 = 1 year, and arbitrarily given monthly loads. 
Indeed, by employing the notation 

 

     
     

1 1 1

1 1 1

2

2 2 3

.....

F H H

F H H

     

     

    

       , (8) 

 
one can write the dimensionless heat load during 
one year as 
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where A0, A1,…, A11 are dimensionless weighting 
coefficients that account for the thermal energy 
that has to be exchanged with the ground during 
the considered month (see Fig.2 for an example).  
Finally, this yearly heat load can be superposed 
in time in order to obtain a time-periodic heat 
load f ( ), with a period 0 of one year (Fig.3) 
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where N is the number of years considered. 

To state the problem in a dimensionless form 
which holds for different ground and BHE 
diameter, it is useful to introduce the Fourier 
number 
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Indeed, according to Eqs. (4) and (11), one has 
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Fig. 1. Step function with a duration of one month, 
given by Eq.(7). 
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Fig. 2. Weighted superposition of twelve one-month 
step function, according to Eq.(9). 
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Fig. 3. Time periodic heat load with period of 1 year, 
according to Eq.(10). 
 
 

To determine the range of Fourier numbers to 
be investigated, we referred to a BHE diameter 
in the range 9-16 cm, which accounts for most 
coaxial and U-tube BHEs, and to the typical 
values of the ground thermal diffusivity αg, as 
reported in Ref. [1]. As a consequence of this 
analysis, we chose the values Fo = 2500, 4400, 
6300. 

Equations (5), (6), (7), with the initial 
condition T * = 0 and the adiabatic condition at 
the external boundary, were solved by finite 
element computations performed through the 
software COMSOL Multiphysics. In detail, the 
Heaviside function flc2hs available in COMSOL 
Multiphysics was used to model Eq.(7), and a 
uniform dimensionless time step equal to 
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(50/16000)· * / Fo was adopted in the 
simulations. 

 
 

Table 1. Values of *

BST for several values of  * / Fo, 

evaluated with 3 meshes. 
 

* Fo
 

*

BST  

Mesh 1 

*

BST  

Mesh 2 

*

BST  

Mesh 3 
0.1 1.430E-01 1.409E-01 1.405E-01 
0.5 1.467E-02 1.438E-02 1.429E-02 
1 7.302E-03 6.772E-03 6.734E-03 
2 3.701E-03 3.570E-03 3.236E-03 
5 1.562E-03 1.557E-03 1.422E-03 
10 7.944E-04 8.000E-04 7.719E-04 
20 3.858E-04 3.870E-04 3.899E-04 
50 1.474E-04 1.480E-04 1.500E-04 

 
 

Table 2. Values of T * at a distance of 160 diameters 
from the BHE axis for several values of  * / Fo, 
evaluated with 3 meshes. 

 
* Fo

 

T * 
Mesh 1 

T * 
Mesh 2 

T * 
Mesh 3 

0.1 9.925E-09 4.696E-09 6.719E-09 
0.5 6.139E-04 5.966E-04 5.962E-04 
1 1.447E-03 1.531E-03 1.528E-03 
2 1.576E-03 1.601E-03 1.637E-03 
5 1.061E-03 1.063E-03 1.032E-03 
10 6.476E-04 6.513E-04 6.372E-04 
20 3.497E-04 3.507E-04 3.527E-04 
50 1.433E-04 1.439E-04 1.457E-04 

 
 
The mesh independence of the results was 

checked by comparing the time evolution of the 
dimensionless temperature, evaluated on SB and 
at a distance of 160 diameters from the BHE 
axis, obtained by employing 3 unstructured 
triangular meshes: Mesh 1, with 8176 elements; 
Mesh 2, with 12064 elements; Mesh 3, with 
26624 elements. The results of the comparison 
are reported in Tables 1 and 2 for some values of 
 * / Fo: the discrepancies between the results are 
always very small. 

With reference to the dimensionless 
temperature on SB, the mean square deviation 
with respect to Mesh 3 is 0.000925 for Mesh 1 
and 0.000201 for Mesh 2, and the relative mean 
square deviation with respect to the mean value 
is 0.0442 for Mesh 1 and 0.00961 for Mesh 2. 
With reference to the dimensionless temperature 

at a distance of 160 diameters from the BHE 
axis, the mean square deviation with respect to 
Mesh 3 is 0.000038 for Mesh 1 and 0.000018 for 
Mesh 2, and the relative mean square deviation 
with respect to the mean value is 0.0513 for 
Mesh 1 and 0.0240 for Mesh 2. 

Since the computational time is not long, 
Mesh 3 was adopted for final computations. 
 
3. Results 
 
For each value of the Fourier number Fo, the 
results of the computations are values of the 
dimensionless temperature T * versus the 
dimensionless parameter  * / Fo, in the range 
0   * / Fo   50, at 11 dimensionless distances 
from the BHE axis, namely: L* = L / D = 0.5 
(i.e., at the BHE surface SB), 40, 50, 60, 70, 80, 
90, 100, 120, 140, 160. By applying the space 
superposition of effects, the distances listed 
above allow to evaluate the time evolution of the 
mean dimensionless temperature at the surface of 
the most critical BHE for any BHE field (such as 
a single line, a double line, a square or 
rectangular field) that can be considered as a part 
of a square field having dimensionless side up to 
320 (i.e., about 51 m for typical U-tube BHEs 
and 29 m for typical coaxial BHEs) and a 
minimum dimensionless distance between 
adjacent BHEs equal to 40. 

For instance, let us consider a single line of 5 
BHEs with a distance between the axes of two 
neighbouring BHEs equal to 40 diameters. Then, 
the dimensionless distances involved in the 
evaluation of the surface temperature of the most 
critical BHE (the central one), are 40 and 80 and 
the dimensionless temperature at the BHE 
surface, denoted by *

1 5T  , can be expressed as 

 
* * * *

1 5 40 802 2
BST T T T      .    (13) 

 
Equation (13) is evaluated with the 
dimensionless unit step heat load F; then, a 
proper weighted sum of the results will yield the 
time evolution of *

1 5T   corresponding to the real 

heat load f given by Eq.(10). 
For each value of Fo (2500, 4400, 6300) and 

for each value of the dimensionless distance 
from the BHE axis (1/2, 40, 50, 60, 70, 80, 90, 
100, 120, 140, 160) the dimensionless 
temperature T* has been evaluated numerically 
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as a function of  * / Fo, in the range 0   * / Fo 
  50, with steps of (50/16000)· * / Fo. 

Then, interpolating functions have been 
determined, with the structures 
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where *

BST  is the dimensionless temperature at 

the BHE surface SB and *

*

L
T is the dimensionless 

temperature at the dimensionless distance L* 
from the BHE axis; B1, B2, B3, B4 and C1, C2, C3 
are constants, whose values are reported in 
Tables 3 and 4, respectively.  
 Illustrations of the time evolution of 

*

*

L
T caused by the unit step heat load F, for 

Fo = 4400, are presented in Figures 4 and 5. 
Figure 4 shows the dimensionless temperature 

*

BST  at the BHE surface for the first 3 years. The 

plot drawn with the red line represents the 
computational results, while the plot drawn with 
the orange line represents the interpolating 
function. The two plots are nearly everywhere 
coincident, so that almost only the orange colour 
appears. Similarly, Figure 5 represents the time 
evolution of T* at a distance of 50 diameters 
from the BHE axis; again, the red and orange 
curves are very close. 
  
 
Table 3. Coefficients of the interpolating function for 

*

BST , given by Eq. (14).  

 
L* = 0.5 

B1 B2 B3 B4 
Fo = 2500 

0.0783 25600 1.770E-06 5 
Fo = 4400 

0.0778 46706 5.477E-07 5.5 
Fo = 6300 

0.0785 62935 1.645E-07 6 

Table 4. Coefficients of the interpolating function for 

*

*

L
T , given by Eq. (15). 
 

L* C1 C2 C3 
Fo = 2500 

40 0.00825 1.060 0.22 
50 0.00800 1.065 0.323 
60 0.00790 1.070 0.445 
70 0.00777 1.071 0.586 
80 0.00762 1.0711 0.738 
90 0.00759 1.0712 0.92 
100 0.00755 1.017 1.12 
120 0.00751 1.017 1.60 
140 0.00747 1.019 2.14 
160 0.00746 1.019 2.75 

Fo = 4400 
40 0.00940 1.065 0.15 
50 0.00829 1.065 0.20 
60 0.00798 1.066 0.27 
70 0.00780 1.069 0.35 
80 0.00735 1.055 0.42 
90 0.00705 1.020 0.495 
100 0.00700 1.010 0.60 
120 0.00700 1.010 0.86 
140 0.00700 1.003 1.155 
160 0.00700 1.003 1.50 

Fo = 6300 
40 0.0106 1.052 0.12 
50 0.0095 1.053 0.16 
60 0.0090 1.030 0.205 
70 0.0084 1.015 0.25 
80 0.0078 1.010 0.30 
90 0.0072 1.004 0.347 
100 0.0069 0.98 0.405 
120 0.0066 0.94 0.549 
140 0.0064 0.93 0.739 
160 0.0062 0.92 0.952 
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Fig. 4. Dimensionless temperature at the BHE surface, 
produced by F: computational values in red, 
interpolating function in orange. 
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Fig. 5. Dimensionless temperature at a distance of 50 
diameters, produced by F: computational values in 
red, interpolating function in orange. 
 
 
For BHE fields in which the distance between 
adjacent BHEs is higher than 40 diameters 
(dimensionless distances less than 40 diameters 
are not recommendable), a linear interpolation 
between the coefficients listed in Tables 3 and 4 
can be used, with errors less than 10% in all the 
conditions that we checked.  

The effects of the hourly peak loads can then 
be added by employing the results obtained in 
Ref. [8], which are independent of the 
groundwater velocity and the BHE field 
geometry. 
 
4. Examples 
 

In this Section, some applications of the 
results will be illustrated. We will refer to a 
partially balanced seasonal heat load, with a 
predominant winter load. This is a common 
circumstance for residential buildings placed in 
North or North-Centre Italy. The considered 
dimensionless heat load is obtained by adopting 
the following values for the coefficients in 
Eq.(9): 
 

 

0 1 2 3

4 5 6

7 8

9 10 11

1, 0.725, 0.374, 0.0872,

0.11, 0.225, 0.417,

0.319, 0.101,

0.0798, 0.589, 0.886.

A A A A

A A A

A A

A A A

   
     
   
  

  (16) 

 
A plot of this heat load is represented in Figures 
2 and 3.  
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Fig. 6. Dimensionless temperature on the BHE 
surface, for a single BHE and for the most critical 
BHE in a line of 3 with a dimensionless distance equal 
to 40 (Fo = 4400). 

 
With reference to a distance of 40 diameters 

between adjacent BHEs and to the intermediate 
value of the Fourier number, Fo = 4400, we will 
first study a line of 3 BHEs. We will compare 
the time evolution of the mean dimensionless 
surface temperature of the most critical BHE in 
the field (i.e., the central one) with that of a 
single BHE, both obtained by means of the 
method explained in Section 3. The comparison 
is presented in Figure 6, where the red line refers 
to a single BHE and the orange line refers to the 
line of 3 BHEs. The Figure shows that a line of 3 
BHEs has an acceptable long-term behaviour, 
even in the absence of groundwater flow. Indeed, 
the highest value of the dimensionless 
temperature (after 49.083 years) is 0.926 for the 
single BHE and 1.183 for the line of 3 BHEs, 
with a 28% relative increase. 
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Fig. 7. Dimensionless temperature on the BHE 
surface, for a single BHE and for the most critical 
BHE in a square field of 33 BHEs, with a 
dimensionless distance equal to 40 (Fo = 4400). 
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The time evolution of surface temperature of 
a single BHE and of the most critical BHE for a 
square field of 33 BHEs is illustrated in Figure 
7. The figure shows that the case of a square 
field of 33 BHEs is critical: the highest 
dimensionless temperature (after 49.083 years) is 
1.831, i.e., 1.98 times the value (0.926) which 
occurs for a single BHE. Moreover, the annual 
increase of the surface temperature of the most 
critical BHE (the central one) after 50 years is 
still very steep. 
 
5. Conclusions 
 

The time evolution of the surface 
temperature of the most critical BHE, for BHE 
fields with unbalanced seasonal loads and no 
groundwater movement, has been studied by 
finite-element computations and the 
superposition of effects. Two dimensionless 
tables have been provided, which allow a 
straightforward evaluation of the time evolution 
of the dimensionless temperature at the surface 
of the most critical BHE for a period of 50 years, 
for any BHE field, with a minimum distance of 
40 diameters between adjacent BHEs, which can 
be considered as a part of a square field with a 
maximum side length of 320 diameters. For 
distances between adjoining BHEs higher than 
40 diameters, a linear interpolation between the 
coefficients reported in the tables can be 
employed with a good accuracy. 
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