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Abstract: We study an innovative technology 
for water bottling using PET. The goals are the 
reduction of the thickness of the plastic bottles 
and consequently of the amount of plastic used 
for a single water bottle, the reduction of  the 
packaging costs and more environmental 
sustainability. We notice that the required 
thickness of the bottle depends on its structural 
function: when carried, the bottles are piled one 
on top of the other and, consequently, they are 
subject to a mechanical loading. Our innovative 
solution introduces in the bottle a suitable 
amount of pressurized inert gas in the free space 
over the water. The pressure of this gas partially 
balances the external loads, and thereby the 
thickness of the bottle can be reduced. Here, we 
study the structural behaviour of a particular thin 
pressurized bottle, and then analyse the 
effectiveness and the criticality of this lay out. 
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1. Introduction 
 

The aim of this work is the study an 
innovative solution for reducing the amount of 
PET needed for the production of a single water 
bottle. This solution must satisfy certain 
conditions on the geometry of the bottle coming 
from the structural functions of this plastic 
packaging. 

The first condition arises from the need of no 
residual strains. When carried, the bottles are 
piled one on the top of the other, so that the 
resulting stress must not exceed the elastic limit 
of the PET, otherwise residual strains arise, and 
then the bottles loose their shape. This is 
unacceptable: besides aesthetic matter, there will 
be practical problems like the impossibility of 
standing alone on the table. 

A second condition is that the thickness of 
the wall of the bottles must be large enough to 
avoid geometric instabilities of the bottle under 
the standard working loads (i.e., the weight of 
the bottles piled on his top). 

The proposed idea is to partially balance the 
external loads with a pressurized air introduced 
into the bottle, in order to satisfy the former two 
conditions and to reduce the thickness at the 
same time.  

An important feature of this problem is that 
there are three phases in mutual interaction: a 
solid phase (the wall of the bottle), a gas phase 
(the pressurized air into the bottle) and a liquid 
phase (the water into the bottle). When loaded, 
the geometry of bottle changes and consequently 
the volume available for the pressurized air 
changes. Since the amount of air in the bottle is 
fixed, a change of volume implies a variation of 
the air pressure. Mathematically speaking, the 
geometry of the body and the pressure of the air 
are function one of the other. This relationship 
can be described by a thermodynamic process; 
by assuming that the deformations are 
sufficiently small, in this work the isentropic 
process is preferred [4]. For this study the water 
is considered incompressible; thus, because a 
change in the internal pressure of the bottle does 
not bring a change in the volume of the water, 
the liquid phase does not interact with the other 
phases.  

 
2. Use of COMSOL Multiphysics 
  
 The wall of bottles has a thickness of few 
tens of millimeters, while the overall dimensions 
of the bottles measures tens of centimeters. This 
enables for applying the theory of thin shells for 
modeling the structural behavior of the solid 
phase [3]. In the STRUCTURAL MECHANICS 
module of COMSOL the SHELL interface is 
available and it can be applied only for modeling 
surfaces; therefore a mesh made only of two-
dimensional elements is required.  

It is important to consider in the material 
settings geometric nonlinearities in order to 
enable a correct modeling of the geometric 
instabilities. 
 Since the change of the air pressure is closely 
related to the available volume, a suitable 
variable for evaluating the volume is required. In 
particular, we define a probe as the integral of 
the unit over the whole internal volume. 



 

Obviously, a mesh of the volume is needed, but 
it should be very coarse because its task is only 
to cover the volume (no structural functions).  
 Since during the resolution the geometry of 
the body changes, the mesh of the volume must 
follow the displacements of the wall. In 
particular, we employ the MOVING MESH 
module to update the mesh of the volume. The 
displacements of the solid elements of the mesh 
are set equal to the displacements u, v, w of the 
elements of the wall. 
 We describe the behavior of the air inside the 
bottle by a relationship set in the SHELL 
interface. In particular, the pressure of the air 
(that is a function of the volume) is set as a 
distributed load on the internal surface of the 
bottle. 
 We choose a segregated stationary solver; 
thus, the unknown variables are grouped in two 
steps: the first step solves the variables of the 
SHELL interface, while the second step updates 
the mesh by means of the MOVING MESH 
module.   
 
3. A preliminary test case 
 
 The settings described above have been 
tested with respect to a problem whose solution 
is analytically known (see [2]). A thin walled 
linearly elastic sphere contains a pressurized gas 
and it is subjected to an external distributed 
constant load. The sphere has a radius r0 of 1 m 
and a thickness s = 1 mm. The elastic modulus of 
the material is E=200 GPa and the Poisson ratio 
is ν=0,29. If the sphere is filled with a gas whose 
pressure is pint,1=6 bar the radius becomes: 
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and the internal volume becomes V1=4,2022 m3. 
Appling an external distributed load pe and 
keeping the mass of the contained  air constant, 
the evolution of the system obeys to the 
following two conditions: 
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with γ=1.4 and Vi the initial internal volume. 
Setting pe=3 bar, after some iterations one find 
that the gas pressure pint reach the value of 

601366 Pa, with internal radius of 1,000534872 
m and the internal volume of 4,1955 m3.  
 The same problem has been solved with 
COMSOL by means of a mesh made of about 
37.000 tetrahedra and 7.000 triangles. 
 

 
Figure 1. Triangles and tetrahedra of the mesh. 

 
After four global iterations, the results are the 
following. The gas pressure is 601374 Pa; the 
displacements, i.e. the differences between the 
radius of the deformed sphere and the initial 
radius, range from 5,30·10-4 m to 5,44·10-4 m. 
The distribution of the displacements is shown in 
Figure 2.  
 

 
Figure 2. Total displacements [m] of the loaded 

sphere. 
 

Considering that the mean value of the 
displacements is near 5,37*10-4 m, the results 
obtained from the numerical model show a very 
good agreement with the analytic solution. 
 
4. Results 
 
 Our analysis is carried on an ordinary bottle 
containing 0,5 liters of plain water and having 
the shape shown in Figure 3 and a weight of 18,5 
g. This bottle has a surface of 0,04 m2: 
considering for PET a density of 1350 kg/m3 [5], 
the wall has an average thickness of 0,34 mm. 



 

The aim of the study is to verify the possibility to 
halve the mass of PET by introducing a suitable 
amount of pressurized inert gas in the packaging. 
Thus, we analyze the structural behavior of a 
bottle having the same shape, but thickness of 
the PET walls reduced to 0,17 mm. In particular, 
we consider a load of 9,4 daN applied on the top 
of the bottle which represents the weight of the 
bottles piled on the top. Since the deformations 
are small, we consider the PET as a linearly 
elastic material with elastic modulus E=2,8 GPa 
and Poisson ratio υ=0,33 [3]. 
 The mesh shown in Figure 3 is made of 
23.000 triangles and 76.000 tetrahedra. As 
explained before, the solid elements of the mesh 
are very coarse because their task is only to 
cover the internal volume of the bottle for the 
volume probe. 
 

 
Figure 3. Triangles and tetrahedra of the mesh. 

 
A first analysis is needed to evaluate the volume 
available for the gas. We perform this analysis 
without the external load and keeping the relative 
gas pressure constant and equal to 2·104 Pa. 
Figure 4 shows the von Mises stresses while 
Figure 5 shows the displacements along the axis 
of the bottle: the highest values of von Mises 
stresses are on the bottom of the bottle and are 
near the elastic limit of PET (55–75 MPa).  

 
Figure 4. von Mises stresses [Pa]; analysis without the 

external load. 
 

 
Figure 5. Displacements [m] along the axis; analysis 

without the external load. 
 
The deformed body has a volume of 541,29 cm3; 
thus, considering that the Italian laws require that 
the bottle must be filled with 520 cm3 of water, 
the pressurized air takes a volume V1=21,29 cm3.  
 The second analysis is performed by 
considering a distributed load on the cap of 9,4 
daN. Since the bottle contains a constant mass of 



 

air, the relationship between the volume V and 
the relative pressure is the following: 
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The solver has needed 6 global iterations to 
reach convergence. As shown in Figure 6, the 
variables of the SHELL interface exhubit errors 
greater than the variables of the MOVING 
MESH module. 
 

 
Figure 6. Histories of convergence. 

 

 
Figure 7. von Mises stresses [Pa]; analysis in presence 

of the external load. 
 
The von Mises stresses and the 

displacements along the axis are shown in 
Figures 7 and 8, respectively. 
 

 
Figure 8. Displacements [m] along the axis; analysis 

in presence of the external load. 
 
The highest von Mises stress (65 MPa), 

reached on the bottom of the bottle, is near  to 
the elastic limit of PET (55–75 MPa); 
consequently, residual strains when the load is 
removed can be easily avoided by a more 
detailed design of the bottle. Obviously in this 
case the displacements are negative. 

The last analysis aims at demonstrating the 
necessity of the pressurized gas in pressure 
inside the bottle when the thickness is reduced to 
0,17 mm. In fact, if the relative pressure of the 
air into the bottle is set equal to zero, the bottle 
undergoes a form of geometric instability and 
consequently collapses under the external load 
(see Figure 9).  

 



 

 
Figure 9. Displacements [m] along the axis for the 

collapsed bottle without pressurized gas. 
 

5. Conclusions 
 
 An innovative technique for water bottling 
has been verified successfully by means of 
advanced multiphysics simulations for the 
particular case of a 0,5 l bottle. The solver 
combines two module of COMSOL: the SHELL 
interface and the MOVING MESH module. The 
introduction of pressurized inert gas in the 
packaging allows to reduce the amount of PET 
halving the thickness of the bottle without the 
occurrence of residual strains or of forms of 
geometric instability of the bottle. The 
pressurized inert gas plays an essential role: in 
absence of the pressurized gas the bottle 
becomes instable. Since the thickness and the 
relative pressure of the gas play the role of 
parameters, the proposed approach can be easily 
extended to a gradient-based optimization 
procedure in order to better improve the values 
of such parameters. 
The stability analysis here developed may be 
further improved by modeling the body within 
the context of nonlinear elasticity theory and 
using some innovative procedures for studying 
stability issues like those developed in [7]. 
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