

Scale-up Design of Ultrasound Horn for Advanced Oxidation Process Using COMSOL Simulation

Zongsu Wei October 10th, 2013 Boston, MA

OUTLINE

- 1. Background
- 2. Objectives
- 3. Simulation
- 4. Results
- 5. Future Work

Emulsifying, Synthesis, Imaging, Damage Detection, cleaning ...

- Organic pollutants
 - polycyclic aromatic
 hydrocarbon
- Inorganic pollutants
 - arsenic
- Disinfection
 - reduce chemical addition
- Desorption
 - enhanced oil recovery

(Moussatov et al., 2003)

Typical ultrasonic horn

- Localized cavitation
- Low energy efficiency
 - **8-29%**^a
- Scaling-up is very difficult

^a Contamine et al., 1994; Kimura et al., 1996; Weavers et al.,
2000; Bhirud et al., 2004; Pee, 2008; Thangavadivel et al.,
2009.

Objectives

- Improved horn configuration Enhanced cavitation
- COMSOL Tool
 - Piezoelectric material model
 - Linear elastic material model
 - Pressure acoustics model

Design Verification

Experimental Characterization

- Hydrophone Measurements
 - a device that can record underwater sound by receiving pressure signals

Reson TC4013 Hydrophone

TDS 5000 Tektronix oscilloscope

Distribution and Location

Sonochemiluminescence (SCL)

 $Luminol + \cdot OH \rightarrow Product + hv$

Experimental Results

Energy efficiency increased to 31.5%

Summary

- More energy-emitting surfaces
- Multiple reactive zones
- Higher energy efficiency
- COMSOL
 - Comparable results
 - A reliable design tool

Large					
Sca	le				

Large-Scale Evaluation

2D and 3D acoustic pressure distribution in the water tank

Future Work

- Large-volume reactor
- Flow cell reactor
- Array of designed horns
- Sediment treatment

Acknowledgement

- The COMSOL Conference
- Dr. Linda Weavers, Dr. John Lenhart, Dr. Ruiyang Xiao, Dr. Meiqiang Cai, Dr. Chin-Min Cheng, Matthew Noerpel, and Mengling Stuckman

Questions?

Governing Equations

• Piezoelectric material model for transducer

$$Stress - charge \begin{cases} \mathbf{T} = c_E \mathbf{S} - e^T \mathbf{E} \\ \mathbf{D} = e \mathbf{S} + \varepsilon_S \mathbf{E} \end{cases}$$
$$Strain - charge \begin{cases} \mathbf{S} = s_E \mathbf{S} + d^T \mathbf{E} \\ \mathbf{D} = d \mathbf{T} + \varepsilon_T \mathbf{E} \end{cases}$$

• Linear elastic material model for irradiator

$$-\rho\omega^2 \boldsymbol{u} - \nabla \cdot \boldsymbol{\sigma} = \mathbf{F}_V e^{i\phi}$$

• Pressure acoustics model for water

$$\nabla^2 P - \frac{1}{c^2} \frac{\partial^2 P}{\partial t^2} = 0$$

Physical Characterization – Hydrophone

volts ∝ pressure

Ultrasonic reactor

Physical Characterization – Sonochemiluminescence (SCL)

Typical horn

 $Luminol + \cdot OH \rightarrow Product + hv$

 $P_{ac} = (dT/dt) \times C_p \times M$

Ultrasonic horn	Freq. (kHz)	Electrical power input (W)	Reaction volume (mL)	Emitting area (cm²)	Acoustic power (W)	Power intensity (W cm ⁻²)	Power density (W L ⁻¹)	Energy efficiency (%)
Designed	20	1000	1250	134	315	2.35	252	31.5
Typical (Branson) ^a	20	350	50	1.20	66.5	55.8	1340	19.0
Typical (Fisher Scientific) ^b	20	275	60	1.20	25.8	21.5	430	9.38

^a Weavers et al., 2000

^b Pee, 2008

^c Contamine et al.,1994; Kimura et al., 1996; Weavers et al., 2000; Bhirud et al., 2004; Pee, 2008; Thangavadivel et al., 2009.

8 – 29% ^c

Cavitation

b — electrical power input is 500 W

$\blacksquare TA + \cdot OH \longrightarrow HTA$

$$k_{nor} = k_{th} \times (PD_{dh}/PD_{th})^{a}$$

 k_{nor} — normalized rate (μ M min⁻¹) k_{th} — rate constant for typical horn (μ M min⁻¹) PD_{dh} — power density for designed horn (W) PD_{th} — power density for typical horn (W)

Ultrasonic horn	HTA formation rate (μ M min ⁻¹)		
Designed	0.36		
Typical (Sonics & Materials) ^b	0.08		
Typical (Fisher Scientific) ^c	0.18		

^a Weavers et al., 2000

^b Price and Lenz, 1993

^c He, 2006

Naphthalene Degradation

• Water tank setup

Diagram of experimental setup for hydrophone measurements in plexiglas box (the depth tangential to horn tip is defines z = 0; 1—Branson 902R Model transducer; 2—serial stepped ultrasonic horn; 3—Reson T4013 hydrophone; 4—water; 5—plexiglas box)

COMSOL

Large-Scale Evaluation

3D (left) and contour (right) mapping of hydrophone measurements in plexiglas tank (X–Y plane at z = 0 cm)

3D (left) and contour (right) mapping of hydrophone measurements in plexiglas tank (X–Y plane at z = +4 cm)

3D (left) and contour (right) mapping of hydrophone measurements in plexiglas tank (X–Y plane at z = -4 cm)

Chemical Structure

Naphthalene

Ethylenediaminetetraacetic Acid (EDTA)

Schematic diagram of longitudinal vibration of single step horn and its equivalent circuits

$$\begin{cases} F_{2} = \alpha_{21} \dot{\xi}_{1} + \alpha_{22}F_{1} \\ \dot{\xi}_{2} = \alpha_{11} \dot{\xi}_{1} + \alpha_{12}F_{1} \\ \begin{bmatrix} \dot{\xi}_{2} \\ F_{2} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} \dot{\xi}_{2} \\ F_{1} \end{bmatrix}$$

$$A_{i} = \begin{bmatrix} \alpha_{11}^{i} & \alpha_{12}^{i} \\ \alpha_{21}^{i} & \alpha_{22}^{i} \end{bmatrix} \qquad A_{i} = \begin{bmatrix} (\cos kl_{i}) & -\frac{j(\sin kl_{i})}{\rho cSi} \\ -j\rho cSi(\sin kl_{i}) & (\cos kl_{i}) \end{bmatrix}$$

$$(a)$$

$$M = A_{i}A_{i-1} \cdots A_{2}A_{i} = \begin{bmatrix} \alpha_{11}^{i} & \alpha_{12}^{i} \\ \alpha_{21}^{i} & \alpha_{22}^{i} \end{bmatrix} \begin{bmatrix} \alpha_{11}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i} & \alpha_{22}^{i} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{21}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{21}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{21}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{21}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{22}^{i-1} \end{bmatrix} \cdots \begin{bmatrix} \alpha_{21}^{i-1} & \alpha_{21}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{21}^{i-1} \\ \alpha_{21}^{i-1} & \alpha_{21}^{i-1} \\ \alpha_{21}^{i-1} & \alpha$$

Diagram of experimental set-up

(a)