Design of MEMS-based Microcantilever for Tuberculosis Detection
Saranya R ¹, Saranya K ¹, Ceemati D ¹, Chandra Devi K ¹, Meenakshi Sundaram N ¹
¹PSG College of Technology, Coimbatore, Tamil Nadu, India.

Introduction: Tuberculosis is caused by a bacterium called Mycobacterium tuberculosis. The fusion protein, ESAT-6/CFP-10 is secreted by the extended region of RDX- 1 which encodes ESX-1, a novel protein secretion system and known to contribute to virulence and pathogenicity in the host. The most prominent cantilever type of detection is preferred (figure 1). The objective of the study was to select the best suited cantilever for tuberculosis detection.

Computational Models: The three dimensional geometry of the Cantilever was simulated using COMSOL Multiphysics 4.3b software (figure 2). The Stoney's formula, which relates cantilever end deflection ‘δ’ to applied stress ‘σ’ given by:

\[\delta = \frac{3(1-\nu)^2}{E} \left(\frac{L}{t} \right)^2 \] \(--- (1)\)

Where ‘\(\nu\)’ is Poisson's ratio,
‘E’ is Young's modulus,
‘L’ is the beam length and
‘t’ is the cantilever thickness

The total force being applied to the cantilever is much more related to the number of analyte molecules attaching to the cantilever. The resonance frequency (f) on a cantilever working in dynamic mode is given by:

\[f = \frac{1}{2\pi} \sqrt{\frac{k}{m_{eff}}} \] \(--- (2)\)

Where ‘\(k\)’ is the spring constant,
‘\(m_{eff}\)’ is the effective or dynamic mass.

Results: The Stationary and Eigen frequency studies are performed. The simulated results of the Cantilever structures are given in figures (3) and (4). The lowering of the resonant frequency is attributed due to the increase in the mass of analyte over the thiolated gold surface.

Conclusions: The Eigen frequency and the maximum displacement were observed for rectangular shaped cantilever sensor. The sensor is highly sensitive since it can detect even attomolar concentration of the analyte molecules. For an input mass of 50 ESX-1 antigens, a maximum displacement of 9.3887*10^-19 was observed (figure 5). Thus, a highly sensitive and selective sensor based on cantilever is simulated using COMSOL Multiphysics 4.3b.

References:

Excerpt from the Proceedings of the 2013 COMSOL Conference in Bangalore