Use of FEM in the Design of an HTS Insert Coil for a High Field NMR Magnet

Ernesto S. Bosque HTS NMR Magnet Projects, ASC, NHFML 2 October 2014 – Post Doc Seminar

U.P. Trociewitz, D.S. Davis, P. Chen, D.K. Hilton, S. Miller, G.E. Miller, C.L. English, D.C. Larbalestier, I. Litvak, W.W. Brey, T.A. Cross, L. Frydman

Platypus: An HTS NMR Magnet System

'As Designed' Magnetic Field Analysis

2D-axisymmetric geometry

- Low Temperature Superconductor (LTS) NbTi and Nb₃Sn
- High Temperature Superconductor (HTS) Bi2212 round wire

Magnetic Fields (mf) interface:

• General PDEs

 $\nabla \times \mathbf{H} = \mathbf{J}\mathbf{e}$ $\mathbf{B} = \nabla \times \mathbf{A}$

- Current (I) to coils
 - LTS 137 A
 - HTS 400 A

Center: n = 179, m = 18Compensation: n = 46, m = 3with J_w defined as $I \cdot m \cdot n/area$

• Far field evaluated with perfect conductor

MFL . FSU

Magnetic Flux Density [T]

'As Designed' Total Magnetic Field Map

High Homogeneity Requirement

1

B(0,0) [T]	B(0,5mm) [T]	<i>h</i> [ppm]
1.954739	1.954688	
2.027699	2.027614	
2.766974	2.766788	
3.923075	3.922821	
5.748768	5.748296	
16.421254	16.420207	63.7877
6.577521	6.576254	
0.226399	0.228721	
6.803920	6.804975	-155.1064
23.225174	23.225182	-0.3383

$$h \text{ [ppm]} = \frac{B_{\underline{z}}(0,0) - B_{\underline{z}}(0,5)}{B_{\underline{z}}(0,0)} \cdot 1e6$$

Concern of Mandrel Magnetization

Magnetization (*M*) vs field strength (*H*) data collected by Jun Lu and fits provided by David Hilton.

 $\mathbf{H} \equiv \left(1/\mu_0 \cdot \mathbf{B} - \mathbf{M}\right)$

Mandrel Magnetization

Concern of Thermal Contraction

2D-axisymmetric

- Active domains highlighted
- Material List:
 - 1. Inconel 600
 - 2. Alumina
 - 3. Stycast 1266
 - 4. G-10

Thermal Stress (tc) interface:

- General PDEs $-\nabla \cdot \sigma = \mathbf{F}_{V}$ $\rho C_{p} \mathbf{u} \cdot \nabla T = \nabla \cdot (k \nabla T) + Q$
- Initial temperature T = 300 K
- Final temperature T = 4.2 K (everywhere)
- Fixed constraint at bottom of bore tube
 u = 0

Map of von Mises Stress [MPa]

Moving Mesh (ale) interface: To keep track of all geometric deformations.

'As Designed' Total Field

Thermal Contraction Compensation

Field of Thermally Contracted 'As Designed'

Compensated Thermal Contraction

Stress Analysis of Platypup (Stress Test Coil)

2D-axisymmetric

- Stress coil
 - 1.3 mm round wire
 - ~10% of Platypus height
- Material List:
 - 1. Inconel 600
 - 2. Alumina
 - 3. Silver
 - 4. Stycast 1266
- Assume good epoxy impregnation

• Three step process:

First run thermal contraction to determine pre compression Then run magnetic field analysis using J_e of each wire Finally, run structural mechanics with Lorentz body force on wires

CONTRACTOR OF THE STATE

Exaggerated Thermal Stress Map

Thermal Stress Analysis Deconstructed

Tension

Compression

Coefficients of Thermal Contraction (alpha)

Axial Tension

FL . FSU

Coefficient of Thermal Expansion [1/K]

Step 2: Apply Current to Deformed Geometry

Magnetic Fields (mf) interface:

- Current (*I*) to coils 400 A Coil: n = 15, m = 18with J_e defined as *I*/*area*
- Far field evaluated with perfect conductor
- Platypup modeled as an insert in the LTS magnet the finished coil will be put into

Magnetic Field Calculation

Step 3: Structural Analysis

Solid Mechanics (solid) interface:

- General PDE
 - $-\nabla \cdot \sigma = \mathbf{F}_{\mathrm{V}}$
- Body force defined from magnetic field analysis:
 F_V = J x B
- Fixed Constraint at bottom of bore tube.

Final Stress Analysis Deconstructed

Tension

Compression

CO HILL . FSU

Radial Tension ~ Wire Tension

Summary

COMSOL Multiphysics has been extensively used to model the HTS NMR Magnet System

- Preliminary magnetic field analyses agree well with analytical field calculations done prior to the onset of numerical modeling.
- Volumetric magnetization shown to have an appreciable effect on the homogeneity of the produced field.
- Thermal contraction of the Platypus design needs to be fully understood to achieve the ~1 ppm field homogeneity target.
- A three step approach:

thermal stress \rightarrow *magnetic field analysis* \rightarrow *structural mechanics* provides insight to the true stress experienced by each winding in the winding pack.