Simulação De Fibras Retorcidas Para a Geração De Modos Com Momento Angular Orbital

Felipe Beltrán-Mejía^{1,2}, Cristiano M. B. Cordeiro¹

 Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas - UNICAMP, SP, Brasil
 Atualmente no Instituto Nacional de Telecomunicações – *INATEL*, Sta. Rita do Sapucaí, MG, Brasil felipebm@inatel.br

Introdução: Fibras ópticas retorcidas servem para gerar modos com momento angular orbital. Estes modos se caracterizam por ter um vetor de Poynting que gira ao redor do eixo da fibra e servem –entre outras coisas– para ampliar a capacidade de transmissão.

Validação: Os resultados foram comparados com os resultados apresentados por [1] e [2].

Figura 1. Imagem ilustrativa do núcleo elíptico de uma fibra óptica retorcida.

Fundamentos: As equações de Maxwell

Figura 2. Modo fundamental para uma PCF com um único anel de 6 buracos de ar.

<u>alfa</u>	<u>Índice Efetivo</u>	Erro respeito a [1]
0	1.4387744724267688+3.4329930925566164E-8i	8.241410680217335e-09
3e3	1.438040574912097+6.48870073296793E-8i	-3.769756721751812e-06
6e3	1.4373088374780165+1.0896695038641036E-7i	-7.681429855169393e-06
8e3	1.4368221723040853+2.1589238257644224E-8i	-1.029739278105087e-05
10e3	1.4363360576506947+1.0020104862685465E-6i	-1.243965844394742e-05
15e3	1.4351285045126778+2.2782211987746146E-8i	2.155980633994605e-03
20e3	1.4339329918413077+1.44821027869923E-7i	1.033186680108795e-03

são invariantes ante transformações de coordenadas. Isto quer dizer que uma fibra retorcida (onde ε,μ são constantes no sistema de coordenadas helicoidais $\varepsilon_1, \varepsilon_2, \varepsilon_3$) pode ser estudada em coordenadas cartesianas como se o material fosse inomogêneo e anisótropo. $\epsilon' = \epsilon \mathbf{T}^{-1}$, $\mu' = \mu \mathbf{T}^{-1}$ sendo.

$$\mathbf{T}^{-1} = \mathbf{J}^{-1}\mathbf{J}^{-T}\det(\mathbf{J})$$
$$(1 + (\alpha\epsilon_2)^2 - \alpha^2\epsilon_1\epsilon_2 - \alpha\epsilon_2)$$

30e31.431342100474024+7.195695447032076E-5i1.966771644230590e-0640e31.4294277939817133+2.989952902237347E-6i1.419072594423525e-0350e31.4262624704239992+6.409144671422834E-6i5.845816419427054e-03

Tabela 1. Comparação dos resultados obtidos.

 $= \left[\begin{array}{ccc} -\alpha^2 \epsilon_1 \epsilon_2 & 1 + (\alpha \epsilon_1)^2 & \alpha \epsilon_1 \\ -\alpha \epsilon_2 & \alpha \epsilon_1 & 1 \end{array} \right]$

onde α é a taxa de retorcimento. Como **T** não depende de ϵ_{3} , podemos fazer uma análise modal da fibra retorcida. **Figura 3**. Resultados para os modos OAM /=2 de uma fibra de salto de índice retorcida.

Referencias:

 1)A. Nicolet et al, *Leaky modes in twisted microstructured optical fibers*, Wave Random
 Complex, **17**, 559 (2007)
 2)G.K.L. Wong, *Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber*, Science, **337**, 446, (2012)

Excerpt from the Proceedings of the 2014 COMSOL Conference in Curitiba