

OPTIMIZATION OF JET MIXER GEOMETRY AND MIXING STUDIES

Attila Egedy, Bálint Molnár, Tamás Varga, Tibor Chován

University of Pannonia, Department of Process Engineering, H-8200, Veszprém, Hungary

> COMSOL CONFERENCE 2014 CAMBRIDGE

- Introduction
- Problem definition, the implemented geometries
- Model development, governing equations
- Mesh independence, time step
- Model validation
- Simulation studies and results
- Conclusions

Introduction

- Mixing is one of the most used operations
- Mixed equipments can be classified by:
 - Operation of the vessel
 - Batch, Semi continuous, Continuous
 - Thermal operation
 - Isothermic, Adiabatic
 - Type of mixing
 - Mechanical, Static, Jet (or disperser)

 The main goal is the geometric optimisation of a tube type disperser

Problem definition

- The device is a "tube inside" the tube" disperser
- There are two inlets, and one outlet of the vessel
- The mixing taking place in the short "reaction zone" after the nozzle
- Different nozzles can be used to achieve better phase homogeneity, and better conversion

COMSOL Conference 2014 Cambridge

11/18/2014

The process Er

Model development governing equations **Stationary** $\rho(\mathbf{u} \cdot \nabla)\mathbf{u}$ Momentum $= \nabla \left[\rho l + (\mu + \mu_{\rm T}) \left(\nabla u + (\nabla u)^{\rm T} \right) - \frac{2}{3} (\mu + \mu_{\rm T}) l - \frac{2}{3} \rho k l \right] + F$ $\rho (u \cdot \nabla) k = \nabla \cdot \left[\left(\mu + \frac{\mu_{\rm T}}{\sigma_{\rm tr}} \right) \nabla k \right] + P_{\rm k} - \rho \epsilon$ balance $\rho(\mathbf{u} \cdot \nabla) \varepsilon = \nabla \cdot \left[\left(\mu + \frac{\mu_{\mathrm{T}}}{\sigma_{\mathrm{o}}} \right) \nabla \varepsilon \right] + c_{\mathrm{e1}} \frac{\varepsilon}{k} P_{\mathrm{k}} - c_{\mathrm{e2}} \rho \frac{\varepsilon^{2}}{k}$ $\frac{d(m_p v)}{dt} = F_t$ $\mu_{\rm T} = \rho c_{\mu} \frac{\kappa^2}{s}$ $F = \frac{1}{\tau_p} m_p (u - v)$ $F = m_p g \frac{\rho_p - \rho}{\rho_n}$ $P_{k} = \mu_{T} \left[\nabla u : (\nabla u + (\nabla u)^{T} - \frac{2}{3} (\nabla \cdot u)^{2} \right] - \frac{2}{3} \rho k \nabla \cdot u$ Component balance without $\nabla \cdot (-D_i \nabla c_i) + u \cdot \nabla c_i = 0$ reaction Flow based particle **Time-dependent** tracing

Time-dependent

5/12

11/18/2014

Solathernöki Interop Bentissing of Process Err

Mesh independence, time step

- Mesh independence study was done with four different meshes
 - Coarser
 - Coarse

$$C = \frac{u\Delta t}{\Delta x} \le C_{\rm max}$$

Δt=0.01 s

 The time step was defined based on Courant number

mim

omputation

Model validation

- An experimental apparatus was created for model validation
- An indicator injection was measured inside a trasparent laboratory scale device
- Video recording based processing was used to calculate residence time with different hole number

- A stationary momentum balance was calculated
- Rectangle function was applied for a timedependent component balance

Residence time results

- Different angles from straight to 20°
- Different number of holes from 4 to 10
- Time dependent component balance based on sationary momentum balance results
- Concentration integrated at the outlet boundary

- ~900 particles originated at the inner inlet (black), and the outer inlet (red)
- Bounce boundary at walls, and freeze boundary at the outlet
- Poincaré plots were used to evaluate the resuls
- Different flow rates were applied

Particle tracing results

- Flow field based particle tracing
- ~900 particles originated at the inner inlet (black), and the outer inlet (red)
- Bounce boundary at walls, and freeze boundary at the outlet
- Poincaré plots were used to evaluate the resuls
- Different constructions, hole numbers, diameters

Conclusions

- A detailed CFD model of a tube type disperser was created. Different simulation studies were performed including residence time distribution and particle tracing studies.
- An experimental device was proposed and built, and the developed CFD model was validated based on residence time measurements. A good agreement was found between the experimental and simulation results.
- The disperser configurations were evaluated based on the results and the swirled configurations were found better.

THANK YOU FOR YOUR ATTENTION!

This work was supported in the frame of the TÉT_12_RO-1-2013-0017 and TAMOP-4.2.2/A-11/1/KONV-2012-0071 projects. Tamás Varga's research activity in this work was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 'National Excellence Program'.

> COMSOL CONFERENCE 2014 CAMBRIDGE