Heat Transfer and Working Temperature Field of a Photovoltaic Panel under Realistic Environmental Conditions

Emilio Ruiz-Reina, Mariano Sidrach-de-Cardona and Michel Piliougine

Department of Applied Physics II, University of Málaga, Spain.

COMSOL CONFERENCE 2014 CAMBRIDGE

Introduction

A great portion of the solar radiation absorbed by a photovoltaic module (typically
85% of the incident radiation) is not converted into electrical energy.

□ It is wasted by heat transfer with the surrounding medium, and also the **increase** of the module's temperature **reduce its efficiency**.

The working temperature of photovoltaic
modules depends on different environmental
factors:

PRESENT WORK: We perform a **numerical study, using COMSOL Multiphysics**, of the convective heat transfer and transient temperature field of a photovoltaic module.

Experimental system

□ The PV panel is mounted in a sun tracker, so we assume normal incident direct radiation.

□ Also, we have to take into account the diffuse radiation.

This one!

Experimental system

□ The module is installed with an angle 30^o with the horizontal axis.

1. The glass of the cover. Thickness: 3 mm.

2. The Silicon cells. Thickness: 0.4 mm.

3. The EVA (ethylene vinyl acetate) film. Thickness: 0.8 mm.

Solid parts

4. The Tedlar back film. Thickness: 0.05 mm. White re

5. The aluminium frame of the PV panel.

Experimental system

Pt100 Temperature sensors

Pt100 Temperature sensors

RTD20(t) (K)

⁸ Irradiation and meteorological measurements

□ Pyranometers, anemometer and wind vane.

⁹ Irradiation and meteorological measurements

□ The full day time-averaged wind speed is 2.19 m/s.

Velwind(t) (m/s)

¹⁰ Irradiation and meteorological measurements

¹¹ Irradiation and meteorological measurements

IrrDif(t) (W/m^2)

¹² Irradiation and meteorological measurements

Thermal equations

U We use the **Heat Transfer in Fluids** interface.

□ Radiation is neglected in this initial studies.

GASEOUS SUBDOMAIN: Heat conduction and convection,

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p \vec{u} \cdot \vec{\nabla} T = \vec{\nabla} \cdot (k \vec{\nabla} T)$$

□ The velocity field is obtained from the Navier-Stokes equations that are solved in the Laminar Flow interface.

□ The density and thermal conductivity of the air are related with the temperature.

Thermal equations

PV SOLID INTERIOR BOUNDARY: Thin thermally resistive layer (4 layers) and boundary heat generation,

$$-\vec{n}\cdot\left(k\vec{\nabla}T\right)=Q_{b}$$

 $\Box Q_b$ has a value that corresponds to the instantaneous incident direct irradiation plus the diffuse radiation.

Material	Thickness	Thermal conductivity
Glass	3 mm	1.7 W/(m·K)
Silicon	0.4 mm	0.235 W/(m·K)
EVA	0.8 mm	148 W/(m⋅K)
Tedlar	0.05 mm	0.158 W/(m·K)

Heat Transfer in Fluids (*ht*)
Heat Transfer in Fluids 1
Thermal Insulation 1
Initial Values 1
Symmetry 1
Temperature 1
Boundary Heat Source 1
Outflow 1
Thin Thermally Resistive Layer 1

Fluid equations

□ They are the corresponding to

the Turbulent Flow, k-ε

interface.

We have wind conditions and,
in this initial calculation, we
neglect the **body force** acting on
the fluid that corresponds to the
buoyancy force due to the
dependence of the density of
the air with the temperature.

Re is approximately 60000

$$\begin{split} \rho \frac{\partial \mathbf{u}}{\partial t} &+ \rho(\mathbf{u} \cdot \nabla) \mathbf{u} = \\ \nabla \cdot \left[-\rho \mathbf{I} + (\mu + \mu_{\mathrm{T}}) \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}} \right) - \frac{2}{3} (\mu + \mu_{\mathrm{T}}) (\nabla \cdot \mathbf{u}) \mathbf{I} - \frac{2}{3} \rho k \mathbf{I} \right] + \mathbf{F} \\ \frac{\partial \rho}{\partial t} &+ \nabla \cdot (\rho \mathbf{u}) = 0 \\ \rho \frac{\partial k}{\partial t} &+ \rho (\mathbf{u} \cdot \nabla) k = \nabla \cdot \left[\left(\mu + \frac{\mu_{\mathrm{T}}}{\sigma_{k}} \right) \nabla k \right] + \rho_{k} - \rho \epsilon \\ \rho \frac{\partial \epsilon}{\partial t} &+ \rho (\mathbf{u} \cdot \nabla) \epsilon = \nabla \cdot \left[\left(\mu + \frac{\mu_{\mathrm{T}}}{\sigma_{c}} \right) \nabla \epsilon \right] + C_{c1} \frac{\epsilon}{k} \rho_{k} - C_{c2} \rho \frac{\epsilon^{2}}{k}, \quad \epsilon = \mathrm{ep} \\ \mu_{\mathrm{T}} &= \rho C_{\mu} \frac{k^{2}}{\epsilon} \\ \rho_{\mathrm{k}} &= \mu_{\mathrm{T}} \left[\nabla \mathbf{u} : \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}} \right) - \frac{2}{3} (\nabla \cdot \mathbf{u})^{2} \right] - \frac{2}{3} \rho k \nabla \cdot \mathbf{u} \end{split}$$

Symmetry 1
Curbulent Flow, k-ε 2 (spf2)
Fluid Properties 1
Wall 1
Initial Values 1
Symmetry 1
Interior Wall 1
Outlet 1
Inlet 1
Open Boundary 1

Fluid Boundary Conditions

Thermal Boundary Conditions

Mesh 1

Solution

□ We have a one-direction coupling system.

□ We use two study time-dependent steps:

In the *first step*, we calculate the air velocity field under the averaged inlet wind velocity, neglecting the dependence of the air viscosity and density with the temperature.

□ In the *second step*, we solve for the temperature distribution, by using the velocity field calculated in the previous step.

Results

Results

Averaged temperature of the solar panel.

Averaged Temperature (degC)

From the calculations and measurements, we can observe that:

□ The time dependent temperature of the module **agree well** with the values founded in experiments.

□ The simulated temperature of the module is a little bit higher than the measured ones.

□ The temperature differences from different points in the panel is about $2 \text{ }^{\circ}\text{C} - 3 \text{ }^{\circ}\text{C}$.

There are two air vortexes, with roughly 30 cm - 40 cm diameter, downstream behind the module.

Conclusions

□ We have shown the **use of COMSOL Multiphysics** in the thermal simulation of a photovoltaic module.

□ From the numerical results, we can extract information about the temperature fields and heat transfer with the ambient medium.

□ In particular, this procedure could be applied in the determination of the heat coefficients of photovoltaic modules made with different technologies, under several installation conditions and wind speeds.

Future work

□ We have started with a very simple simulation and we now have to:

- □ Include the effect of the time-dependent wind velocity.
- □ Take into account the variable wind direction.
- □ Make the strong coupling.
- □ Introduce the more complex geometry of the solar tracker system.

Bibliography

- M. Mattei, G. Norton, C. Cristofari, M. Muselli and P. Poggi, *Renewable Energy*, **31**, 553-567 (2006).
- 2. K. Emery, *Measurement and Characterization of Solar Cells and Modules*, in *Handbook of Photovoltaic Science and Technology*, A. Luque and S. Hegedus, eds. (2003).
- 3. M. C. Alonso García and J. L. Balenzategui, *Renewable Energy*, **29**, 1997-2010 (2004).

Acknowledgements

Financial support for this work by Junta de Andalucía, Spain, Project P11-RNM-7115, is gratefully acknowledged.

Thank you very much for your attention!

UNIVERSIDAD DE MÁLAGA